期刊文献+

一种基于障碍物登陆点检测的全局路径规划算法 被引量:6

A global path planning algorithm based on obstacle landing node detection
下载PDF
导出
摘要 地图栅格化是机器人路径规划的常用方法,但地图规模的扩大会造成搜索栅格数量呈指数级增长,使得算法效率大幅下降。针对这一问题,提出了一种基于障碍物登陆点检测的全局路径规划算法。依据障碍物的分布特点,通过计算障碍物映射角寻找登陆点,并在障碍物边缘区域建立赋权图,缩小结点搜索范围,避免大规模搜索栅格结点;然后,依据赋权图特点对Dijkstra算法进行改进,利用改进的Dijkstra搜索全局最短路径。分别将所提的算法与传统A*算法及其变体JPS算法进行实验对比,结果表明,所提算法比传统A*算法以及JPS算法规划路径略短,搜索速度更快,尤其在走廊等障碍物块较少的大规模地图中,搜索时间仅为A*算法的1/8,JPS算法的1/3。 Map rasterization is a common method for robot path planning,but a significant decrease in algorithm efficiency arises as the number of grids searched increases exponentially with the expansion of map scale.A global path planning algorithm based on obstacle landing node detection is proposed.Based on the distribution characteristics of obstacles,landing nodes are found out by calculating the mapping angles of obstacles,and a weighted graph is established in the edge region of obstacles to narrow the range of nodes searched and avoid large-scale search in grid nodes.Then according to the characteristics of weighted graph,Dijkstra algorithm is improved and used to search the global shortest path.The proposed algorithm is compared with the traditional A*algorithm and a variant of A*,JPS algorithm.The experimental results show that the proposed algorithm has slightly shorter length and faster speed of path planning than the traditional A*algorithm and JPS algorithm,especially in large-scale maps with fewer obstacle blocks such as hallway,the search time is only one-eighth of the A*algorithm and one third of the JPS algorithm.
作者 王磊 王毓 孙力帆 WANG Lei;WANG Yu;SUN Lifan(School of International Education,Henan University of Science and Technology,Luoyang 471023,China;School of Information Engineering,Henan University of Science and Technology,Luoyang 471023,China)
出处 《中国惯性技术学报》 EI CSCD 北大核心 2022年第3期388-394,共7页 Journal of Chinese Inertial Technology
基金 国家自然科学基金(U1809202) 装备预研领域基金(61403120207) 国家航空科学基金(20185142003) 河南省自然科学基金(222300420433) 河南省高校科技创新人才支持计划项目(21HASTIT030) 河南省高等学校青年骨干教师资助项目(2020GGJS073)。
关键词 障碍物块 登陆点 碰撞检测 DIJKSTRA 路径规划 obstacle block landing node collision test Dijkstra path planning
  • 相关文献

参考文献6

二级参考文献56

  • 1张捍东,郑睿,岑豫皖.移动机器人路径规划技术的现状与展望[J].系统仿真学报,2005,17(2):439-443. 被引量:120
  • 2于红斌,李孝安.基于栅格法的机器人快速路径规划[J].微电子学与计算机,2005,22(6):98-100. 被引量:63
  • 3高庆吉,于咏生,胡丹丹.基于改进A*算法的可行性路径搜索及优化[J].中国民航学院学报,2005,23(4):42-45. 被引量:15
  • 4刘华军,杨静宇,陆建峰,唐振民,赵春霞,成伟明.移动机器人运动规划研究综述[J].中国工程科学,2006,8(1):85-94. 被引量:74
  • 5HU Yanrong, YANG S X. A knowledge based genetic', algo- rithm for path planning of a mobile robot [ C ]//Proceedings 3f the 2004 IEEE International Conference on Robotics and Automation. New Orleans, USA, 2004: 4350-4355.
  • 6SATHYARAJ B M, JAIN L C, FINN A, et al. Multiple UAVs path planning algorithms : a comparative study [ J ]. Fuzzy Optimization and Decision Making, 2008, 7 (3): 257 -267.
  • 7WU X J, TANG J, LI Q, et al. Development of a configu- ration space motion planner for robot in dynamic environ- ment[ J ]. Robotics and Computer-Integrated Manufacturing, 2009, 25 ( 1 ) : 13-31.
  • 8CARSTEN J, FERGUSON D, STENTZ A. 3D field D: improved path planning and replanning in three dimensions [ C]//2006 IEEE/RSJ International Conference on Intelli- gent Robots and Systems. Beijing, China, 2006: 3381- 3386.
  • 9DOLGOV D, THRUN S, MONTEMERLO M, et al. Prac- tical search techniques in path planning for autonomous driving[ C ]//Proceedings of the First International Sympo- sium on Search Techniques in Artificial Intelligence and Robotics. Chicago, USA, 2008: 1-6.
  • 10HART P E, NILSSON N J, RAPHAEL B. A formal basis for the heuristic determination of minimum cost paths [ J ]. IEEE Transactions on Systems Science and Cybernetics, 1968, 4(2) : 100-107.

共引文献166

同被引文献45

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部