期刊文献+

TPRPF:a preserving framework of privacy relations based on adversarial training for texts in big data

原文传递
导出
摘要 1Introduction Texts data are used to train deep learning models in cloud servers that have the strong computing power and large storage space,which can seriously endanger the user's privacy.Specifically,the attacker can use the intercepted text representations of text data of the primary learning tasks to train an adversarial classifier to infer private attributes or private information,such as gender,age of the user,and the relation between users.
出处 《Frontiers of Computer Science》 SCIE EI CSCD 2022年第4期239-241,共3页 中国计算机科学前沿(英文版)
基金 supported by the Guangdong National Key Research and Development Plan(2018YFB1800702,PCL2021A02) the National Natural Science Foundation of China(Grant Nos.62002077,U20B2046,U1636215,61871140,U1803263) the Guangdong Higher Education Innovation Group 2020KCXTD007 and Guangzhou Higher Education Innovation Group 202032854,the Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2019) the China Postdoctoral Science Foundation(2020M682657).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部