摘要
针对如何将多视图的丰富信息融合进一致图以及避免谱嵌入后续处理过程中导致的次优性能问题,提出一种基于多样性的一致谱嵌入学习的多视图聚类算法.该算法在考虑视图多样性的前提下自动学习权重以便更好地学习一致图,并学习一致的谱嵌入矩阵和离散化聚类标签矩阵.通过在真实数据集上与其他算法进行对比实验,证明了该算法在提升聚类性能方面的优越性.
Aiming at the problems that how to fuse the rich information of multi-views into the consensus graph and avoid the sub-optimal performance caused by the spectral embedding in the subsequent processing, we proposed a multi-view clustering algorithm based on diversity consensus spectral embedding learning. In order to learn the consensus graph better, the algorithm automatically learnt the consensus spectral embedding matrix and the discrete clustering label matrix under the consideration of the diversity of views. By comparing with other algorithms on real data sets, the superiority of the proposed algorithm in improving clustering performance was proved.
作者
耿莉
王长鹏
GENG Li;WANG Changpeng(School of Science,Chang’an University,Xi’an 710064,China)
出处
《吉林大学学报(理学版)》
CAS
北大核心
2022年第5期1133-1142,共10页
Journal of Jilin University:Science Edition
基金
国家自然科学基金青年科学基金(批准号:12001057)。
关键词
一致图
自动加权
谱嵌入
多视图聚类
consensus graph
automatic weighting
spectral embedding
multi-view clustering