摘要
本文研究了RLW-KdV方程的一个三层线性紧致有限差分格式.该格式是质量守恒和能量守恒的,用离散能量法证明了差分格式的收敛性和稳定性.所建格式的收敛阶为O(τ~2+h~4).数值实验验证了该格式的有效性和可靠性.
In this paper,a three-level compact finite difference scheme for solving the RLW-KdV equation is proposed.The compact finite difference scheme has conservation of discrete mass and energy.The convergence and stability of the present scheme are proved by the discrete energy method.The rate of the convergence is O(τ~2+/h~4).The numerical experiment shows that the proposed scheme is efficient and reliable.
作者
邓雅清
王晓峰
何育宇
DENG Ya-qing;WANG Xiao-feng;HE Yu-yu(School of Mathematics and Statistics,Minnan Normal University,Zhangzhou 363000,China)
出处
《数学杂志》
2022年第5期425-436,共12页
Journal of Mathematics
基金
福建省自然科学基金项目资助(2020J01796)。