期刊文献+

Distributed entanglement generation from asynchronously excited qubits

原文传递
导出
摘要 The generation of GHZ states calls for simultaneous excitation of multiple qubits.The peculiarity of such states is reflected in their nonzero distributed entanglement which is not contained in other entangled states.We study the optimal way to excite three superconducting qubits through a common cavity resonator in a circuit such that the generation of distributed entanglement among them could be obtained at the highest degree in a time-controllable way.A non-negative measure quantifying this entanglement is derived as a time function of the quadripartite system evolution.We find that this measure does not stay static but obtains the same maximum periodically.When the qubit-resonator couplings are allowed to vary,its peak value is enhanced monotonically by increasing the greatest coupling strength to one of the qubits.The period of its peak to peak revival maximizes when the couplings become inhomogeneous,thus qubit excitation becoming asynchronous,at a relative ratio of 0.35.The study demonstrates the role of asynchronous excitations for time-controlling multi-qubit systems,in particular in extending entanglement time.
出处 《Frontiers of physics》 SCIE CSCD 2022年第4期107-113,共7页 物理学前沿(英文版)
基金 support by the Science and Technology Development Fund,Macao SAR(File no.0130/2019/A3)and University of Macao(MYRG2018-00088-IAPME).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部