摘要
Auxetic metastructures have attracted tremendous attention because of their robust multifunctional properties and promising potential industrial applications.This paper studies the in-plane mechanical behaviors of a chiral S-shaped metastructure subjected to tensile loading in both X-direction and Y-direction and wave propagation properties using the finite element(FE)method.The relationships between structural parameters and elastic behaviors are also discussed.The results indicate that the orientation of chiral S-shaped metastructure under tensile loading in the X-direction exhibits higher auxeticity and stiffness.Then,the band structures and the edge modes of each band gap of the chiral S-shaped metastructure are explored,and the relations between band gap properties and structural parameters are also systematically analyzed.Moreover,we explore the wave mitigation of the chiral S-shaped metastructures by regulating the structural parameters.Finally,the transmission properties of the finite chiral S-shaped periodic metastructures are studied to confirm the results of band gap simulation.This study promotes the engineering application of vibration isolation of chiral structures based on the band gap theory.
基金
supported by the National Natural Science Foundation of China under the Grant Number of 12072241 and the Fundamental Research Funds for the Central Universities under the Grant Number of 2042022kf0009.