摘要
针对基本状态转移算法容易陷入局部最优的问题,将改进的Tent混沌加入到基本状态转移算法中,采用改进的Tent混沌映射来初始化种群,Tent混沌序列的随机性、规律性等特性抑制了算法的局部早熟,使种群快速跳出局部最优,从而提高寻优的精度。通过物理实验证明该算法的有效性,用改进的状态转移算法实现单相逆变器中关键元器件的参数辨识,算法可以有效辨识单相逆变器中关键元器件的参数。与基本状态转移算法进行比较,改进的状态转移算法辨识精度高。
Aiming at the problem that the basic state transition algorithm is easy to fall into local optimum,the improved Tent chaos is added to the basic state transition algorithm and the improved Tent chaotic map is used to initialize the population.The randomness and regularity of the Tent chaotic sequence restrain the local premature of the algorithm,and make the population jump out of the local optimum quickly,thus improving the optimization accuracy.The effectiveness of the algorithm is proved by physical experiments.The improved state transition algorithm is used to identify the parameters of key components in single-phase inverter,and the algorithm can effectively identify the parameters of key components in single-phase inverter.Compared with the basic state transition algorithm,the improved state transition algorithm has high identification accuracy.
作者
艾纯玉
帕孜来·马合木提
刘硕
AI Chun-yu;Pazilai·MAHEMUTI;LIU Shuo(Xinjiang University,Urumqi 830047,China)
出处
《电力电子技术》
CSCD
北大核心
2022年第4期16-18,共3页
Power Electronics
基金
国家自然科学基金(61963034)。
关键词
逆变器
状态转移算法
参数辨识
inverter
state transition algorithm
parameter identification