期刊文献+

一种基于双支路神经网络遥感影像的建筑物变化检测方法

A Remote Sensing Building Change Detection Method Based on Dual-branch Neural Network
下载PDF
导出
摘要 针对当前深度学习遥感建筑物变化检测方法难以顾及多时相语义特征的相关性和互补性的问题,本文利用双支神经网络具有从不同时相遥感影像中直接提取图像特征信息,发现不同时相遥感影像中同类地物特征的相似性找出图像中的变化信息的能力,提出了一种基于双支路神经网络遥感影像的建筑物变化检测方法,用于克服不同成像条件带来的图像特征差异,融合多时相语义特征的相关性和互补性,提高遥感建筑物变化检测的精度。在国产高分卫星影像数据集上的实验结果表明,本文方法比单支网络SegNet识别准确性更高,边界更加清晰,小斑块建筑物变化也能够更准确地识别。 In order to solve the problems that the current deep learning method of building change detection cannot effectively take into account the correlation and complementarity of multi-temporal semantic features.In this paper,a remote sensing building change detection method based on dual-branch neural network is proposed to integrate the correlation and complementarity of multi-temporal semantic features,overcome the difference of image features caused by different imaging conditions,and improve the accuracy of building change detection.It uses the characteristics of dual-branch network,which can extract image feature information directly from remote sensing images of different time phases,finds the similarity of similar features in remote sensing images of different time phases and the change information in the image.The experimental results on the GF satellite image datasets show that the proposed method has higher recognition accuracy,clearer boundary,and more accurate recognition of small patch building changes than SegNet network.
作者 侯恩兵 吴艳兰 任光耀 张海 汪涵 杨辉 HOU Enbing;WU Yanlan;REN Guangyao;ZHANG Hai;WANG Han;YANG Hui(Anhui Second Surveying and Mapping Institute,Hefei 230061,China;School of Resources and Environmental Engineering,Anhui University,Hefei 230601,China)
出处 《测绘与空间地理信息》 2022年第9期40-43,共4页 Geomatics & Spatial Information Technology
基金 2021年度安徽省测绘局科研项目——顾及多时相语义特征的双支结构深度学习模型遥感影像变化检测研究(SCHJKY-2021-02)资助。
关键词 建筑物变化检测 双支神经网络 高分辨率遥感影像 building change detection dual-branch neural network high-resolution remote sensing images
  • 相关文献

参考文献3

二级参考文献25

共引文献428

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部