摘要
研究了Tu方程的非局域留数对称,并利用Lie定理将其局域化为对应延拓系统的Lie点对称,得到相应延拓系统的对称群变换定理.最后,分析Tu方程的CRE可解性,构造出该系统的B?cklund变换定理和新的相互作用解,并作图进行了描述.
In this paper,the nonlocal residual symmetries and B?cklund transformation of the Tu equations have been obtained based on the Painlevé truncated expansion method.By means of the Lie theorem,the nonlocal residual symmetries of the Tu equations has been localized into the Lie point symmetries with corresponding extended systems.Then the finite symmetries of the Tu equations have been obtained.Finally,the consistent Riccati expansion solvability of the Tu equations is proved,and the solitary wave solutions of the equations is obtained.
作者
吕梓帆
LYU Zifan(School of Mathematics,Northwest University,Xi'an 710127,China)
出处
《西南师范大学学报(自然科学版)》
CAS
2022年第9期23-29,共7页
Journal of Southwest China Normal University(Natural Science Edition)
基金
国家自然科学基金项目(11775047)。
关键词
留数对称
B?cklund变换
Lie点对称
CRE可解性
孤立波解
residual symmetries
B?cklund transformation
Lie point symmetries
consistent Riccati expansion solvability
solitary wave solutions