期刊文献+

基于快速超扭曲算法的永磁同步电机预测控制 被引量:1

Predictive Control of Permanent Magnet Synchronous Motor Based on Fast Super-twisting Algorithm
下载PDF
导出
摘要 针对永磁同步电机转速电流双预测调速系统动态响应慢及快速超扭曲控制抖振过大的问题,提出了一种基于快速超扭曲算法的无差拍电流预测控制。该控制策略的转速环为快速二阶super-twisting滑模控制,电流环为无差拍电流预测控制,同时设计了扩张观测器来实时估计系统的负载扰动。采用此算法使系统的响应时间提高了6.8 ms,稳速时的转速跟踪误差仅为-0.01~0 rpm,有效的解决了传统预测控制中快速性与鲁棒性之间的矛盾,同时也提高了传统二阶滑模控制算法的收敛速度。仿真结果表明,本文所提控制算法可有效提高PMSM控制系统的动态响应速度和稳态控制精度,增强系统的鲁棒性。 According to the problem of slow dynamic response of speed and current dual predictive speed regulation system of permanent magnet synchronous motor and excessive chattering array of super-twisting control,a deadbeat current predictive control based on fast super-twisting algorithm is proposed.The speed loop of the control strategy is a fast second-order super-twisting sliding mode control,and the current loop is a deadbeat current predictive control.At the same time,an extended observer is designed to estimate the load disturbance of the system in real time.Using this algorithm,the response time of the system is increased by 6.8 ms,and the speed tracking error at steady speed is only-0.01~0 rpm,which effectively solves the contradiction between rapidity and robustness in the traditional predictive control,and improves the convergence speed of the traditional second-order sliding mode control algorithm.Simulation results show that the proposed control algorithm can effectively improve the dynamic response speed and steady-state control accuracy of PMSM control system,and enhance the robustness of the system.
作者 刘伟 吴润龙 LIU Wei;WU Run-long(School of Electrical and Information Engineering,Northeast Petroleum University,Daqing 163319,China)
出处 《组合机床与自动化加工技术》 北大核心 2022年第9期80-83,87,共5页 Modular Machine Tool & Automatic Manufacturing Technique
基金 国家自然科学基金资助项目(61673102)。
关键词 永磁同步电机 快速超扭曲算法 预测控制 扩张观测器 滑模控制 PMSM fast super-twisting algorithm predictive control extended observer sliding mode control
  • 相关文献

参考文献9

二级参考文献86

  • 1赵志诚,桑海,张井岗.永磁同步电机速度伺服系统的分数阶内模控制[J].系统仿真学报,2015,27(2):384-388. 被引量:6
  • 2Seung Gi J, Myung Ho W. DSP-based active power filter with predictive current control[J]. IEEE Trans on Industrial Electronics, 1997, 44(3): 329-336.
  • 3Buso S, Fasolo S, Mattavelli P. Uninterruptible power supply multiloop control employing digital predictive voltage and current regulators[J]. IEEE Trans on Industrial Applications, 2001, 37(6): 1846-1854.
  • 4Bose B K. Modern power electronics and AC drives[M]. New Jersey: Prentice Hall PTR, 2001:236-239.
  • 5Zmood D N, Holmes D G, Bode domain analysis of three-phase G H. Frequency- linear current regulators[J]. IEEE Trans on Industrial Applications, 2001, 37(2): 601-610.
  • 6Zmood D N, Holmes D G. Stationary frame current regulation of PWM inverters with zero steady-state error[J]. IEEE Trans on Power Electronics, 2003, 18(3): 814-822.
  • 7Kukrer O. Discrete-time current control of voltage- fed three-phase PWM inverters[J]. IEEE Trans on Power Electronics, 1996, 11(2): 260-269.
  • 8Moon H T, Kim H S, Youn M J. A discrete-time predictive current control for PMSM[J]. IEEE Trans on Power Electronics, 2003, 18(1): 464-472.
  • 9Morel F, Lin Shi X, R6tif J M, et al. A comparative study of predictive current control schemes for apermanent-magnet synchronous machine drive[J]. IEEE Trans on Industrial Electronics, 2009, 56(7): 2715-2728.
  • 10Malesani L, Mattavelli P, Buso S. Robust dead-beat current control for PWM rectifiers and activefilters[J]. IEEE Trans on Industry Applications, 1999, 35(3): 613-620.

共引文献229

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部