期刊文献+

基于CRDS和WM-DAS的宽量程免标定H_(2)S体积分数的测量 被引量:1

Wide-range and calibration-free H_(2)S volume fraction measurement based on combination of wavelength modulation and direct absorption spectroscopy with cavity ringdown spectroscopy
下载PDF
导出
摘要 结合腔衰荡光谱(CRDS)与波长调制-直接吸收光谱(WM-DAS),建立了一种宽量程、免标定的气体体积分数的检测方法,具有CRDS高信噪比及WM-DAS快速和可测量绝对体积分数的优点.基线衰荡时间(τ)可通过测量谱线中心频率处吸收率(WM-DAS)和衰荡时间(CRDS)计算得到,无需实时校准,极大提升了CRDS测量速度.室温常压下,在6336.617 cm处不同体积分数的H_(2)S测量结果表明,该方法动态测量范围可扩展到4个数量级以上,测量精度相比WM-DAS得到了提高,且检测限可在40 s内达到1×10^(9). Combining cavity ring down spectroscopy(CRDS)and wavelength modulated direct absorption spectroscopy(WM-DAS),a wide range and calibration-free gas concentration detection method is established,which has the advantages of high signal-to-noise ratio of CRDS and fast speed and measurable absolute concentration of WM-DAS.The baseline ring down time(τ)can be calculated by measuring the absorptivity(WM-DAS)and ring down time(CRDS)at the central frequency of the spectral line,without real-time calibration,which greatly improves the speed of CRDS measurement.The measurement results of different H_(2)S concentrations at 6336.617 cmat room temperature and atmospheric pressure show that the dynamic measurement range of this method can be extended to more than 4 orders of magnitude,the measurement accuracy is improved in comparison with WM-DAS,and the detection limit can reach 1×10^(9)in 40 s.
作者 王振 杜艳君 丁艳军 吕俊复 彭志敏 Wang Zhen;Du Yan-Jun;Ding Yan-Jun;LüJun-Fu;Peng Zhi-Min(State Key Laboratory of Power Systems,Department of Energy and Power Engineering,Tsinghua University,Beijing 100084,China;School of Control and Computer Engineering,North China Electric Power University,Beijing 100084,China)
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2022年第18期195-202,共8页 Acta Physica Sinica
基金 国家重点研发计划(批准号:2019YFB2006002) 华能集团总部科技项目(批准号:HNKJ20-H50)资助的课题。
关键词 腔衰荡光谱 波长调制-直接吸收光谱 宽量程 免标定 硫化氢浓度 cavity ring down spectroscopy wavelength modulation-direct absorption spectroscopy wide range calibration free H_(2)S concentration
  • 相关文献

参考文献2

二级参考文献31

  • 1Mohsen-Nia M, Moddaress H, Mansoori G 1994 J. Petrol. Sci. Eng. 12 127.
  • 2Dominic R A 2008 Surf Sci. 602 2758.
  • 3Wu Q E Yakshinskiy B V, Gouder T, Madey T E 2003 Catal. Today 85 291.
  • 4Voznyy O, Dubowski J J 2008 J. Phys. Chem. C 112 3726.
  • 5Jazayeri S M, Karimzadeh R 2011 Energy Fuels 25 4235.
  • 6Fletcher G, Fry J L, Pattnaik P C 1988 Phys. Rev. B 37 4944.
  • 7Briant C L, Sieradzki K 1989 Phys. Rev. Lett. 63 2156.
  • 8Apostol E Mishin Y 2010 Phys. Rev. B 82 144115.
  • 9Ramasubramaniam A, Itakura M, Ortiz M, Carte E 2008 J. Mater. Res. 23 2757.
  • 10Nazarov R, I-Iickel T, Neugebauer J 2010 Phys. Rev. B 82 224104.

共引文献11

同被引文献23

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部