期刊文献+

对磨材料经渗碳处理对衬套材料磨损性能的影响 被引量:2

Wear Performance of Bushing Material by Counterface Material after Carburizing Treatment
下载PDF
导出
摘要 目的 为提高衬套材料的摩擦磨损性能和极压载荷提供理论依据,探究其适用工况。方法 通过对对磨材料进行渗碳处理,采用SRV–IV微动摩擦磨损试验机进行摩擦磨损试验,研究在模拟实际工况下对磨件进行渗碳处理后对常用的2种衬套材料摩擦磨损性能的影响,采用三维面扫仪、扫描电镜、成分分析仪等探究其磨损机理。结果 将对磨材料进行渗碳处理后,QSn7–0.2合金进入稳定磨损阶段的时间提前了25%,平均摩擦因数增大了2.23%,平均磨损质量上升了26.53%,极压载荷减小了50.86%;CuNi6Sn6合金进入稳定磨损阶段的时间提前了约50%,平均摩擦因数减小了10.22%,平均磨损质量下降了9.09%;极压载荷减小了58.63%。对磨材料未经渗碳处理,QSn7–0.2合金的磨损机理主要为磨粒磨损,伴随轻微的黏着磨损;CuNi6Sn6合金的磨损机理主要为点蚀磨损,伴随少量的磨粒磨损。对磨材料经渗碳处理后,QSn7–0.2合金的磨损机理为剥层磨损,伴随轻微的黏着磨损和磨粒磨损;CuNi6Sn6合金的磨损机理主要为胶合磨损,伴随黏着磨损及少量磨粒磨损。结论 对磨材料经渗碳处理后,对于QSn7–0.2合金而言,平均摩擦因数和磨损质量增大;CuNi6Sn6合金的平均摩擦因数和磨损质量都相应减小,但挤压载荷减小的幅度更大。因此,CuNi6Sn6合金适用于对磨材料经渗碳处理且极限载荷较低的工况;QSn7–0.2合金适用于对磨工件未经渗碳处理的、极限压力较大的工况条件。 The work aims to provide a theoretical basis for improving the friction and wear performance and extreme pressure load of bushing materials, and then explore the applicable working conditions. SRV-IV fretting friction and wear tester was used to carry out friction and wear test. The effects of carburizing treatment on friction and wear performance of 2 kinds of bushing materials in common use were studied under simulated actual working conditions. Three-dimensional scanning instrument, scanning electron microscope and composition analyzer were used to explore the wear mechanism. After carburizing treatment of counterface materials, QSn7-0.2 alloy entered the stable wear stage 25% earlier, with average friction coefficient increasing by 2.23%, average wear quality increasing by 26.53%, and extreme pressure load decreasing by 50.86%. CuNi6Sn6 alloy entered the stable wear stage about 50% earlier, with average friction coefficient decreasing by 10.22%, average wear quality decreasing by 9.09%, and extreme pressure load decreasing by 58.63%. For the counterface materials without carburizing treatment, the wear mechanism of QSn7-0.2 alloy was mainly abrasive wear, accompanied by slight adhesive wear,and the wear mechanism of CuNi6Sn6 alloy was mainly pitting wear, accompanied by a small amount of abrasive wear. After carburizing treatment of counterface materials, the wear mechanism of QSn7-0.2 alloy was delamination wear, accompanied by slight adhesive wear and abrasive wear, while the wear mechanism of CuNi6Sn6 alloy was mainly adhesion wear, accompanied by adhesive wear and a small amount of abrasive wear. After carburizing treatment of counterface materials, the average friction coefficient and wear quality of QSn7-0.2 alloy increase. The average friction coefficient and wear quality of CuNi6Sn6 alloy decrease correspondingly, but the reduction of extrusion load is relatively larger. Therefore, CuNi6Sn6 alloy is suitable for the carburized counterface materials under low extrusion condition. QSn7–0.2 alloy is suitable for the working conditions of the workpiece to be ground without carburizing treatment under high ultimate pressure.
作者 徐少男 樊文欣 李睿林 XU Shao-nan;FAN Wen-xin;LI Rui-lin(School of Mechanical Engineering,North University of China,Taiyuan 030051,China)
出处 《表面技术》 EI CAS CSCD 北大核心 2022年第9期120-130,共11页 Surface Technology
基金 山西省重点研发计划国际科技合作项目(201903D421035)。
关键词 QSn7–0.2合金 CuNi6Sn6合金 渗碳处理 摩擦因数 极压载荷 磨损机理 QSn7-0.2 alloy CuNi6Sn6 alloy carburizing treatment friction coefficient extrusion load wear mechanism
  • 相关文献

参考文献6

二级参考文献41

共引文献27

同被引文献18

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部