期刊文献+

基于学习的图像超分辨率技术回顾与展望 被引量:1

Review and prospect of learning based image super-resolution technology
下载PDF
导出
摘要 围绕图像超分辨率重建技术,列举并总结了传统图像超分辨率重建方法的优点及其局限性。回顾了几种经典的基于学习的超分辨率方法,并分析对比了不同模型的特点及在不同数据集上的实验结果。最后,对图像超分辨率重建技术的未来发展趋势进行展望。 Focusing on super-resolution(SR)reconstruction methods,the advantages and limitations of traditional image SR reconstruction methods have been introduced and summarized.Several classical learning based super-resolution methods are reviewed.The characteristics of different models and the experimental results on different data sets are analyzed and compared.Finally,prospects for the future development of SR methods are presented.
作者 李莹华 刘悦 刘颖 LI Yinghua;LIU Yue;LIU Ying(Institute of Image and Information Processing,Xi'an University of Posts and Telecommunications,Xi'an 710121,China;Key Laboratory of Electronic Information Application Technology for Crime Scene Investigation,Ministry of Public Security,Xi'an University of Posts and Telecommunications,Xi'an 710121,China;International Cooperation Research Center for Wireless Communication and Information Processing Technology,Xi'an University of Posts and Telecommunications,Xi'an 710121,China)
出处 《西安邮电大学学报》 2022年第2期72-87,共16页 Journal of Xi’an University of Posts and Telecommunications
基金 国家自然科学基金项目(62071380) 陕西省自然科学基础研究计划项目(2021JQ-708)。
关键词 图像超分辨率重建 深度学习 对抗网络 稀疏表示 神经网络 image super-resolution reconstruction deep learning countermeasure network sparse representation neural network
  • 相关文献

参考文献14

二级参考文献75

  • 1李丙春,耿国华,周明全,孙蕾.一个医学图像分类器的设计[J].计算机工程与应用,2004,40(17):230-232. 被引量:14
  • 2宁晓菊.一种基于神经网络提取图像特征的图像检索方法[J].西安邮电学院学报,2006,11(3):88-91. 被引量:4
  • 3罗四维,赵连伟.基于谱图理论的流形学习算法[J].计算机研究与发展,2006,43(7):1173-1179. 被引量:76
  • 4Park S C,Park M K,Kang M G.Super-resolution image reconstruction:a technical overview[J].IEEE Signal Processing Magazine,2003,20(3):21-36.
  • 5Yang Min Chun,Wang Yu Chiang Frank.A self-learning approach to single image superresolution[J].IEEE Transactions on Multimedia,2013,15(3):498-508.
  • 6Simon B,Takeo K.Limits on super-resolution and how to break them[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2000,9(2):372-379.
  • 7Freeman W T,Jones T R,Carmichael O T.Learning low-level vision[J].International Journal of Computer Vision,2000,40(1):25-47.
  • 8Freeman W T,Jones T R,Pasztor E C.Examplebased super-resolution[J].IEEE Computer Graphics and Applications,2002,22(2):56-65.
  • 9Su K,Qi T,Qing X,et al.Neighborhood issue in single frame image super-resolution[C]∥IEEE conference on Multimedia and Expo.Amsterdam:IEEE.2005,6(5):109-112.
  • 10Chan Tak Ming,Zhang Junping,Pu Jian.et a1.Neighbor embedding based super-resolution algorithm through edge detection and feature se1ection[J].Pattern Recognition Letters,2009,30(5):494-502.

共引文献79

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部