摘要
为增强逐日太阳辐照度预测的准确性和普适性,提出一种基于多维特征分析的双层协同预测模型。首先,搭建一种双层协同架构,将整个模型分成基准层和提升层两部分,使用分层预测的方式追踪目标对象的多维特征和变化趋势;其次,以数值天气预报(NWP)为输入,采用LightGBM基于特征学习预测方法构建基准预测模型;然后,在前者的基础上,挖掘目标时刻太阳辐照度与历史时序数据之间的关联性,引入改进AdaBoost算法与多隐层极限学习机(MH-ELM)作为提升层主体,提高时序预测的稳定性;最后,选用中国中部地区某光伏电站实测太阳辐照度数据进行算例分析,验证了该模型的合理性和有效性。
In order to enhance the accuracy and universality of daily solar radiation intensity prediction,a bi-layer collaborative prediction model based on multi-feature analysis is proposed.Firstly,a bi-layer collaborative architecture is established,which divides the entire model into two parts,the base layer and the promotion layer.It tracks the multi-feature and changing trends of the target object using a layered prediction method.Secondly,a benchmark prediction model is also established base on the feature learning prediction method,by using LightGBM and numerical weather prediction(NWP)as input.Then,on the basis of the former,the correlation between the solar irradiance at the target moment and the historical time series data is mined.The improved AdaBoost algorithm and the multiple hidden layer extreme learning machine(MH-ELM)are introduced as the main body of the lifting layer to improve the stability of time series prediction.Finally,the actual measured solar irradiance data of a photovoltaic power station in the central region of China is selected to analyze the calculation example.The rationality and validity of the model are verified.
作者
张鸿皓
杨国华
郑豪丰
柳勇
杨倩
贾睿
Zhang Honghao;Yang Guohua;Zheng Haofeng;Liu Yong;Yang Qian;Jia Rui(School of Physics and Electronic-Electrical Engineering,Ningxia University,Yinchuan 750021,China;Ningxia Key Laboratory of Electrical Energy Security,Yinchuan 750004,China)
出处
《太阳能学报》
EI
CAS
CSCD
北大核心
2022年第8期143-149,共7页
Acta Energiae Solaris Sinica
基金
国家自然科学基金(61763040)
宁夏自治区重点研发项目(2018BFH03004)
宁夏自治区自然科学基金(NZ17022)。