期刊文献+

融合压缩采样与深度神经网络的直接序列扩频参数估计 被引量:2

Estimation of DSSS Signal Parameter Based on Compressive Sampling and Deep Neural Networks
下载PDF
导出
摘要 直接序列扩频(Direct Sequence Spread Spectrum,DSSS)信号的宽频带特性所带来的高采样率增加了参数估计的实现难度。针对现有技术所面临的问题与挑战,融合压缩采样与深度神经网络(Deep Neural Network,DNN),提出了用于估计DSSS信号参数的方法。一方面,压缩采样能够利用信号的冗余性,以较低的采样率获取信号中的有效参数信息;另一方面,DNN在提取数据特征方面具有高效准确的特点。通过对压缩采样与参数估计网络的整体训练,实现两者的有效配合,进而实现以较低采样率对DSSS信号参数的准确估计。仿真实验证明了该参数估计方法在低信噪比下的估计能力相对于传统方法具有一定的提升。 The high sampling rates caused by the wideband characteristics of the direct sequence spread spectrum(DSSS)signals increase the difficulty of the parameter estimations.Regarding to the problems and challenges within the existing techniques,a method based on the combination of the compressive sampling(CS)and deep neural network(DNN)is proposed to estimate the parameters of the DSSS signals.On the one hand,the CS can obtain the information on the parameters effectively with low sampling rate,by exploiting the redundancy within signals;on the other hand,the DNN can extract the data features effectively and accurately.By the combined training of the compressive sampling and the parameter estimation network,the effective cooperation of the two parts and the accurate estimation of the DSSS estimations with low sampling rates are achieved.The simulations prove that the proposed method outperforms the conventional method in terms of estimation capability in low signal-to-noise ratio.
作者 刘锋 张爽 黄渝昂 LIU Feng;ZHANG Shuang;HUANG Yuang(College of Electronic Information and Optical Engineering,Nankai University,Tianjin 300350,China;Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology,Nankai University,Tianjin 300350,China)
出处 《电讯技术》 北大核心 2022年第9期1248-1253,共6页 Telecommunication Engineering
基金 国家自然科学基金资助项目(61901233) 天津市自然科学基金项目(19JCQNJC00900)。
关键词 直接序列扩频(DSSS) 参数估计 压缩采样 深度神经网络(DNN) direct sequence spread spectrum(DSSS) parameter estimation compressive sampling deep neural network(DNN)
  • 相关文献

参考文献2

二级参考文献15

  • 1詹亚锋,曹志刚,马正新.直接扩频序列信号的参数估计[J].系统工程与电子技术,2004,26(9):1176-1178. 被引量:14
  • 2谈满堂,朱德君.谱相关理论用于直接序列扩谱信号的检测与估计[J].电子对抗,1995(4):53-59. 被引量:13
  • 3[1]Polydoros A,Holmes J K.Autocorrelation techniques for wideband detection of FH/DS waveform in random tone Interference[A].IEEE Military Communications Conference[C].USA:Washington DC,1983:781-785.
  • 4[2]Polydoros A,Woo K T.LPI detection of frequency-hopping signals using autoeorrelation teehniques[J].IEEE Journal on SAIC,1985,3(5):714-726.
  • 5[3]Polydoros A,Weber C L.Detection performance con-siderations for direct-sequence and time-hopping LPI waveforms[J].IEEE Journal on SAIC,1985,3(5):727-744.
  • 6[4]Hinedi S.Polydoros A.DS/LPI autocorrelation detec-tion in noise plus random-tone interference[J].IEEE Trans.on Communications,1990,38(6):805-817.
  • 7[5]Kuehls J F,Geraniotis E.Presence detection of binary-phase-shift-keyed and direct-sequence spread-spectrum signals using a prefilter-delay-and-multiply device[J].IEEE Journal on SAIC,1990,8(5):915-933.
  • 8[6]Burel G,Bouder C,Berder O.Detection of direct se-quence spread spectrum transmissions without prior knowledge[A].IEEE Global Telecommunications Con-ference[C].USA:San Antonio,TX,2001:236-239.
  • 9罗来源,肖先赐.扩频信号分路相关检测器的性能分析[J].电子科学学刊,1998,20(4):474-479. 被引量:1
  • 10郭伟,余敬东.一种直扩信号相关检测方法[J].信号处理,1998,14(2):104-109. 被引量:3

共引文献10

同被引文献24

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部