摘要
研究类时共形齐性曲面x:M_(1)^(2)→R_(1)^(3),并假设其形状算子可对角化且有一对复主曲率的情形.首先通过定义共形不变度量g_(c),典则提升Y,共形切标架{E_(1),E_(2)}和典则法标架ξ,并给出了这类曲面的一个完备共形不变量系统{E_(1),E_(2)}.接下来通过可积条件,证明了这类曲面的分类定理,并构造出了对应的非杜邦曲面的例子及其共形变换子群.
In this paper,we mainly study the time-like conformal surfaces x(M_(1)^(2)),where the shape operators are diagonal and have a pair of complex principal curvatures in R_(1)^(3).First,by introducing the conformal invariant metricg,the canonical lift Y,conformal tangent frame{E_(1),E_(2)} and conformal normal frameξ,we derive a complete conformal invariant system{{E_(1),E_(2)}for time-like surface in R~3.Then,we obtain classification theorem for time-like conformal homogeneous surfaces,by providing non-dupin surfaces,together with the corresponding conformal transformation subgroups.
作者
林燕斌
LIN Yanbin(College of Mathematics and Statistics,Minnan Normal University,Zhangzhou Fujian,363000)
出处
《闽南师范大学学报(自然科学版)》
2022年第3期24-29,共6页
Journal of Minnan Normal University:Natural Science
基金
福建省自然科学基金青年项目(2022J05167)
福建省中青年教师教育科研项目(B12029)
20年校长基金(L22002)。
关键词
复主曲率
共形不变标架
共形群
类时共形齐性曲面
complex principalcurvature
conformalinvariantframe
conformalgroup
time-likeconformalhomogeneous surface