摘要
局部邻域粗糙集降低了近似集计算的时间复杂度,为数值型数据的知识发现提供了一种高效的方法.现实环境下的数据通常是数值型并且会随着时间的变化而动态变化.为了对动态数值型数据进行有效的知识发现,提出一种局部邻域粗糙集模型的增量更新算法.分析对象集变化时局部近似集的更新公式,设计动态数值型数据的局部近似集的更新算法.实验结果表明,所提出的算法能够有效利用已有知识,比非增量算法具有更高的计算效率.
The local neighborhood rough set reduces the time complexity to calculate the approximation set and provides an efficient method for the knowledge discovery of numerical data.The data in real environment is usually numerical and will change dynamically with time.In order to perform effective knowledge discovery on dynamic numerical data,an incremental updating algorithm of local neighborhood rough set model is proposed in this paper.In this paper,we analyze the updating formula of local approximation set when the object set changes,and designs the updating algorithm of local approximation set of dynamic numerical data.The experimental results show that the proposed algorithm can effectively utilize the existing knowledge and has higher computational efficiency than non-incremental algorithm.
作者
时俊鹏
张燕兰
SHI Junpeng;ZHANG Yanlan(School of Computer Science,Minnan Normal University,Zhangzhou,Fujian 363000,China;Key Laboratory of Data Science and Intelligence Application,Zhangzhou,Fujian 363000,China)
出处
《闽南师范大学学报(自然科学版)》
2022年第3期30-37,共8页
Journal of Minnan Normal University:Natural Science
基金
国家自然科学基金(11701258,11871259)
福建省自然科学基金(2022J01912,2020J01801,2020J02043,2019J01749)
福建省高校杰出青年科研人才培养计划资助。
关键词
粗糙集
局部邻域粗糙集
对象变化
近似集
增量更新
rough set
local neighborhood rough set
object change
approximation set
incremental updating