期刊文献+

基于变截面双T坡板变形解析方程的计算模型研究

Research on Calculation Model of Deformation Analytical Equation Based on Variable Cross Section Double T Sloping Plate
下载PDF
导出
摘要 对于变截面双T坡板结构,采用一般的等截面变形解析方程无法求解。本文针对变截面双T坡板沿长度方向的截面变化规律,建立了简化后的惯性矩拟合方程,并利用该方程推导了在简支梁结构均布荷载、跨中集中力、对称集中力条件下的变形解析方程,给出了跨中变形的计算公式,最后通过有限元分析验证跨中变形的理论计算,结果显示,YTSb 243-2型双T坡板偏差率在1.25%~1.43%之间,且随着荷载值的增加,偏差率越小,拟合效果越好,该计算模型可为工程中变截面双T坡板的变形计算提供参考。 For the variable-section double-T slope slab structure,the general constant-section deformation analytical equation cannot be solved. Therefore,in this paper,a simplified fitting equation of the moment of inertia is established for the section change law of the variable section double T sloped slab along the length direction,and the equation is used to deduce the uniform load,mid-span concentrated force,and symmetrical concentration in the simply supported beam structure. The analytical equation of deformation under force conditions is given,and the calculation formula of mid-span deformation is given. Finally,the theoretical calculation of mid-span deformation is verified by finite element analysis. %,and with the increase of the load value,the smaller the deviation rate is,the better the fitting effect is. The calculation model can provide a reference for the deformation calculation of the variable-section double-T slope slab in the project.
作者 秦泽豹 QIN Zebao
出处 《福建建设科技》 2022年第5期97-100,共4页 Fujian Construction Science & Technology
关键词 变截面双T坡板 变形解析方程 计算模型 Variable cross-section double T slope plate deformation analytical equation calculation model
  • 相关文献

参考文献5

二级参考文献16

  • 1石国桢.弯曲挠度计算的积分矩阵方法[J].武汉交通科技大学学报,1996,20(5):571-577. 被引量:2
  • 2袁玉全,彭建设.矩形薄板线性弯曲挠度的微分求积法研究[J].四川理工学院学报(自然科学版),2007,20(1):99-103. 被引量:9
  • 3Brown C L.The Treatment of discontinuities in beam deflection problems. Quarterly of Applied Mathematics . 1944
  • 4RenYongjian,I Elishakoff.Flexibility-based finite element analysis for structures with random material properties. Journal of Applied Mechanics . 1998
  • 5Barnett R L.Minimum-weight design of beams for deflection. Transactions of the ASME . 1963
  • 6Haug E J,Kirmser P G.Minimum weight design of beams with in equality constraiants on stress and deflection. Journal of Applied Mechanics . 1967
  • 7刘鸿文.材料力学Ⅱ[M].北京:高等教育出版社,2009.
  • 8Timoshenko G J. Mechanics of material[M]. Beijing: Science Press, 1990.
  • 9孙训方,方孝淑,关来泰.材料力学Ⅱ[M].北京:高等教育出版社,2008:10.
  • 10宋相道.矩形变截面悬臂梁的挠度计算公式[J].建筑结构,1998,28(7):58-58. 被引量:2

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部