期刊文献+

Nitric oxide negatively regulates gibberellin signaling to coordinate growth and salt tolerance in Arabidopsis 被引量:3

原文传递
导出
摘要 In response to dynamically altered environments,plants must finely coordinate the balance between growth and stress responses for their survival.However,the underpinning regulatory mechanisms remain largely elusive.The phytohormone gibberellin promotes growth via a derepression mechanism by proteasomal degradation of the DELLA transcription repressors.Conversely,the stress-induced burst of nitric oxide(NO)enhances stress tolerance,largely relying on NO-mediated S-nitrosylation,a redox-based posttranslational modification.Here,we show that S-nitrosylation of Cys-374 in the Arabidopsis RGA protein,a key member of DELLAs,inhibits its interaction with the F-box protein SLY1,thereby preventing its proteasomal degradation under salinity condition.The accumulation of RGA consequently retards growth but enhances salt tolerance.We propose that NO negatively regulates gibberellin signaling via S-nitrosylation of RGA to coordinate the balance of growth and stress responses when challenged by adverse environments.
出处 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2022年第8期756-765,共10页 遗传学报(英文版)
基金 supported by grants from the National Natural Science Foundation of China (31830017 and 31521001) Chinese Academy of Sciences (XDB27030207) State Key Laboratory of Plant Genomics (SKLPG2020-22)
  • 相关文献

参考文献5

二级参考文献117

  • 1Sakamoto, T., Kobayashi, M., Itoh, H., Tagiri, A., Kayano, T., Tanaka,It., Iwahori, S., and Matsuoka, M. (2001). Expression of a gibberellin 2-oxidase gene around the shoot apex is related to phase transition in rice. Plant Physiol. 125: 1508-1516.
  • 2Sakamolo, T., Miura, K., Itoh, H., Tatsumi, T., Ueguchi-Tanaka, M., Ishiyama, K., Kobayashi, M., Agrawal, G.K., Takeda, S., Abe, K., Miyao, A., Hirochika, H., Kitano, H., Ashikari, M., and Matsuoka, M. (2004). An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol. 134:1642-1653.
  • 3Sakamoto, T., Morinaka, Y., Ishiyama, K., Kobayashi, M., Itoh, H., Kayano, T., Iwahori, S., Matsuoka, M., and Tanaka, H. (2003). Genetic manipulation of gibberellin metabolism in transgenic rice. Nat. B iotechnol. 21:909-913.
  • 4Alcazar, R., Garcia-Martinez, J.L., Cuevas, J.C., Tiburcio, A.F., and AltabeUa, T. (2005). Overexpression of ADC2 in Arabidopsis induces dwarfism and late-flowering through GA deficiency. Plant J. 43: 425-436.
  • 5Busov, V.B., Meilan, R., Pearce, D.W., Ma, C., Rood, S.B., and Strauss, S.H. (2003). Activation tagging of a dominant gibberellin catabolism gene (GA 2-oxidase) from poplar that regulates tree stature. Plant Physiol. 132: 1283-1291.
  • 6Fleet, C.M., Yamaguchi, S., Hanada, A., Kawaide, H., David, C.J., Kamiya, Y., and Sun, T.P. (2003). Overexpression of AtCPS and AtKS in Arabidopsis confers increased ent-kaurene production but no increase in bioactive gibberellins. Plant Physiol. 132: 830-839.
  • 7Harberd, N.P., King, K.E., Carol, P., Cowling, R.J., Peng, J., and Richards, D.E. (1998). Gibberellin: inhibitor of an inhibitor of...? Bioessays 20: 1001-1008.
  • 8Hedden, P., and Kamiya, Y. (1997). GIBBERELLIN BIOSYNTHESIS: enzymes, genes and their regulation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 431-460.
  • 9Hedden, P., and Phillips, A.L. (2000). Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci. 5: 523-530.
  • 10Helliwell, C.A., Sullivan, J.A., Mould, R.M., Gray, J.C., Peacock, W.J., and Dennis, E.S. (2001). A plastid envelope location of Arabidopsis ent-kaurene oxidase links the plastid and endoplasmic reticulum steps of the gibberellin biosynthesis pathway. Plant J. 28: 201-208.

共引文献113

同被引文献40

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部