期刊文献+

高效高精度全局优化算法及其气动应用研究 被引量:2

Study of the Efficient Global Optimization with High Accuracy and Its Applications in Aerodynamic
下载PDF
导出
摘要 经典的高效全局优化(efficient global optimization,EGO)算法搜寻得到的最优解,受代理模型精度及过早收敛等问题的制约,其精度仍存在进一步改善的空间。围绕最优解精度进一步改善的问题,研究了面向精确最优解的EGO算法。该算法基于Kriging代理模型,涉及的最优加点策略采用考虑Kriging信任的改善期望函数法,使得优化迭代后期更偏向于局部寻优。此外,文中还考虑了与成熟的拟牛顿法和Powell法等局部优化方法协同的算法,以提高最优解的搜寻精度。选用了若干典型的检验函数,对优化算法的具体实施过程进行了模拟与分析,发现改进后的优化算法能以相对较少的额外函数评估次数得到比经典的EGO算法更精确的全局最优解,从而验证了算法的有效性和准确性。最后,把发展的算法应用到具体的跨音速翼型优化问题,算例表明,改进后的EGO算法翼型阻力较原EGO算法减小了1.11%,显示了其工程实用性。 Subjected to the accuracy of surrogate model and premature convergence sometimes occurs,the solution of classical efficient global optimization(EGO)usually can be improved.Regarding this point,this paper presents a thorough study of the EGO with high accuracy optimal solution.The algorithm is based on the Kriging surrogate model,in which the Kriging believe strategy based Expected Improvement(EI)function is adopted,it can help to lead the optimal solution to local optimum in the late period of iteration.Besides,in order to improving the accuracy,cooperating with quasi-Newton method and Powell method are also incorporated.Several representative numerical examples are selected to test the algorithms above,the result shows that the algorithms in this paper can reach more accurate global optimal solution than classical EGO,with less additional cost.At last,an aerodynamic optimization problem is developed,it shows that the drag coefficient decreased 1.11%further than the former EGO,shows its practicability in an engineering environment.
作者 徐圣冠 陈红全 张加乐 高缓钦 贾雪松 XU Shengguan;CHEN Hongquan;ZHANG Jiale;GAO Huanqin;JIA Xuesong(Key Laboratory of Non-Steady Aerodynamics and Flow Control of MIIT,College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,Jiangsu,China)
出处 《空天防御》 2022年第3期65-72,共8页 Air & Space Defense
基金 国家自然科学基金(12102185,11972189) 中国博士后科学基金(12102185) 江苏省自然科学基金(BK20190391)。
关键词 高效全局优化算法 改善期望函数 N-S方程 翼型优化 efficient global optimization(EGO)algorithm expected improvement(EI)function Navier-Stokes equations airfoil optimization
  • 相关文献

参考文献7

二级参考文献61

  • 1于向军,张利辉,李春然,李志波,刘万华.克里金模型及其在全局优化设计中的应用[J].中国工程机械学报,2006,4(3):259-261. 被引量:9
  • 2游海龙,贾新章.基于遗传算法的Kriging模型构造与优化[J].计算机辅助设计与图形学学报,2007,19(1):64-68. 被引量:22
  • 3《飞机设计手册》总编委会.民用飞机总体设计[M].北京:航空工业出版社,2005:58-59.
  • 4SIMPSON T W, TOROPOV V, BALABANOV V, et al.Design and analysis of computer experiments in multidisciplinary design optimization: A review of how far we have come-or not[C]// 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, September 10-12, 2008, Victoria, British Columbia Canada. 2008: 1-21.
  • 5SIMPSON T W, BOOKER A J, GHOSH D, et al. Approximation methods in multidisciplinary analysis and optimization: A panel discussion[J]. Struct. Multidisc. Optim., 2004, 27: 302-313.
  • 6JIN R, CHEN W, SIMPSON T W. Comparative studies of metamodeling techniques under multiple modeling critieria[J]. Struct. Multidisc. Optim., 2001, 23: 1-13.
  • 7GUTMANN H M. A radial basis function method for global optimization[J]. Journal of Global Optimization, 2001, 19: 201-227.
  • 8MULLUR A A, MESSAC A, Extended radial basis functions: More flexible and effective metamodeling[J]. AIAAJournal, 2005, 43(6): 1306-1315.
  • 9MECKESHEIMER M, BARTON R R, SIMPSON T. Metamodeling of combined discrete/continuous responses [J]. AIAA Journal, 2001, 39(10): 1950-1959.
  • 10YOUNG A, CAOChengyu, PATELV, etal. Adaptive control design methodology for nonlinearin control systems in aircraft applications[J]. Journal of Guidance, Control and Dynamics, 2007, 30(6): 1770-1782.

共引文献234

同被引文献34

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部