期刊文献+

基于用电行为聚类筛选的智能电网需求响应建模研究 被引量:2

Research on Smart Grid Demand Response Modeling Based on Power Consumption Behavior Clustering Screening
下载PDF
导出
摘要 为了降低负荷波动,实现电网经济效益最大化,通过分析智能电网的特点、用户响应方式,从相关参与方利益出发对用户的用电方式进行聚类分析,综合考虑用户电价敏感度以及响应报价来构建多目标用户筛选模型进行用户挖掘,同时基于支持向量回归算法构建电价计算模型。这样既给出了实施对象的选择方法,又给出了实施过程中合理的电价计算策略,实测结果证明模型计算误差较小,为提升智能电网的需求响应的实施效果奠定了数据基础。 In order to reduce the load fluctuation,maximize economic benefit of power grid,this article analyzes of the characteristics of the smart grid and the response mode of users,related parties interests of users of electricity clustering analysis in the form of comprehensive consideration.It builds a multi-objective users screening model for mining,at the same time,builds electricity price calculation model based on support vector regression algorithm.This paper not only gives the selection method of the implementation object,but also gives the reasonable calculation strategy of the electricity price during the implementation process.The measured results show that the calculation error of the model is small,which lays a data foundation for improving the implementation effect of smart grid demand response.
作者 曹骏 徐健 冯亦凡 孟楠 CAO Jun;XU Jian;FENG Yifan;MENG Nan(State Grid Suzhou Power Supply Company,Suzhou 215000,China;Hangzhou Telehems Electronics Technology Co.,Ltd.,Hangzhou 310000,China)
出处 《微型电脑应用》 2022年第9期191-193,197,共4页 Microcomputer Applications
关键词 智能电网 需求响应 聚类分析 信息模型 smart grid demand response cluster analysis information model
  • 相关文献

参考文献7

二级参考文献114

  • 1唐捷,任震,胡秀珍.一种可操作的需求侧管理峰谷分时电价定价方法[J].电网技术,2005,29(22):71-75. 被引量:47
  • 2潘敬东,谢开,华科.计及用户响应的实时电价模型及其内点法实现[J].电力系统自动化,2005,29(23):8-14. 被引量:29
  • 3上海市2007年有序用电管理工作介绍[J].上海节能,2007(2):4-6. 被引量:2
  • 4Albadi M H, E1-Saadany E F. A summary of demand response in electricity markets[J]. Electric Power Systems Research, 2008, 78: 1989-1996.
  • 5US Departrnent of Energy. Benefits of demand response in electricity markets and recommendations for achieving them[R/OL]. Report to the United States Congress, February 2006[2015]. http://eetd.lbl.gov.
  • 6Federal Energy Regulatory Commission. Assessment of demand response & advanced metering[R]. FERC Staff Issue Assessment of Demand Response and Advanced Metering Report, 2012.
  • 7North American Electric Refiablity Corporation. Potential reliability impacts of emerging flexible resources [R/OL]. Princeton: NERC, 201012015-09]. http://www.nerc.com/files/1VGTF_ Task_15_Final. pdf.
  • 8Saele H, Grande OS. Demand response from household customers: experiences from a pilot study in Norway[J]. IEEE Transactions on SmartGrid, 2011, 2(1): 102-109.
  • 9国家发展改革委,财政部.关于完善电力应急机制做好电力需求侧管理城市综合试点工作的通知[EB/OL].北京:中华人民共和国国家发展和改革委员会,2015[2015-04-07].http://www.sdpc.govc11/zcfI)/zcfbtd201504,t20150409677004.html.
  • 10Shariatzadeh F, Mandal P, Srivastava A.K. Demand response for sustainable energy systems: a review, application and implementation strategy[J]. Renewable and Sustainable Energy Reviews, 2015, 45: 343-350.

共引文献254

同被引文献14

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部