期刊文献+

基于无人机三维点云的玉米植株自动计数研究 被引量:4

Automatic counting of maize plants based on unmanned aerial vehicle(UAV)3D point cloud
下载PDF
导出
摘要 植株计数是农民、育种专家等在整个作物生长季评估作物生长状况和管理实践的最常用方法之一,可用来进行合理的田间规划以及管理。针对高密度种植试验区高通量获取玉米自动株数方法匮乏的问题,本研究利用无人机遥感平台,获取田间314个不同基因型的玉米高密度育种小区的数码影像和激光雷达(light detection and ranging,LiDAR)点云数据,发展了一种结合玉米三维空间信息的固定窗口局部最大值算法,实现了高密度玉米育种小区成株数的自动检测,并对比了基于此两种不同数据源的检测精度。该方法以冠层高度模型(canopy height model,CHM)中包含的株高信息为基础,以玉米种植株距为固定窗口进行单株玉米种子点检测,并将检测到的种子点与目视解译的玉米位置进行空间匹配来进行精度的评估。结果表明,基于无人机数码影像构建3种空间分辨率CHM的综合检测精度分别为81.30%、83.11%和78.93%;基于无人机LiDAR的综合精度分别为82.33%、88.66%和81.46%;基于两种数据源构建的CHM,均在空间分辨率为0.05 m时,获得最佳的检测精度。此外,当空间分辨率相同时,LiDAR数据检测精度略优于无人机数码影像,无人机数码传感器由于其成本低、易于操作等优势,在大面积、高密度育种小区的玉米高通量单株检测中表现出更大的潜力。本研究实现了对密植玉米育种试验区玉米株数的自动计数,为表型筛选、田间管理和精准估产等提供依据。 Plant counting is one of the most commonly used methods for farmers and breeding experts to evaluate crop growth status and management practices throughout the crop growing season,which can be used for reasonable field planning and management.In view of the lack of high-throughput methods to obtain the number of maize plants in the high-density planting experimental area,this study used the unmanned aerial vehicle(UAV)remote sensing platform to obtain the digital images and light detection and ranging(LiDAR)point cloud data of 314 maize high-density breeding plots with different genotypes in the field,and developed a fixed window local maximum algorithm combined with maize three-dimensional spatial information.The automatic detection of the number of plants in high density maize breeding plot was realized,and the detection accuracy based on the two different data sources was compared.Based on the plant height information in the crop height model(CHM),the method detected the seed points of each maize plant by using local maximum filter with a fixed window size,and then we spatially matched the detected seed points with the position of maize interpreted visually to evaluate the accuracy.The results showed that the comprehensive detection accuracy of three spatial resolutions CHM based on UAV digital images was 81.30%,83.11%and 78.93%respectively,and the comprehensive accuracy of UAV-LiDAR was 82.33%,88.66%and 81.46%respectively.The CHM,based on the two different data sources had the best detection accuracy when the spatial resolution was 0.05 m.In addition,when the spatial resolution was the same,LiDAR performsed better than UAV digital images.But when the demand for detection accuracy was not high,the digital sensor showed greater potential in field management because of its cheap price and easy to operate.This study realized the automatic counting of maize plant number in dense planting maize breeding experimental area,which provided a basis for phenotypic screening,field management and accurate yield estimation.
作者 姜友谊 张成健 韩少宇 杨小冬 杨贵军 杨浩 JIANG Youyi;ZHANG Chengjian;HAN Shaoyu;YANG Xiaodong;YANG Guijun;YANG Hao(College of Geomatics,Xi an University of Science and Technology,Xi an 710054,China;Key Laboratory of Quantitative Remote Sensing in Agriculture,Ministry of Agriculture and Rural Affairs,Beijing Research Center for Information Technology in Agriculture,Beijing 100097,China;National Engineering Research Center for Information Technology in Agriculture,Beijing 100097,China)
出处 《浙江农业学报》 CSCD 北大核心 2022年第9期2032-2042,共11页 Acta Agriculturae Zhejiangensis
基金 广东省重点领域研发计划(2019B020216001) 国家自然科学基金(41972315,41671411)。
关键词 自动计数 无人机 高通量 局部最大值 冠层高度模型 大田育种 automatic counting unmanned aerial vehicle high-throughput local maximum canopy height model field breeding
  • 相关文献

参考文献7

二级参考文献134

共引文献225

同被引文献51

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部