摘要
研究了3种热处理制度和2种冷却方式对IMI834钛合金组织及拉伸性能的影响。采用光学显微镜分析了不同热处理制度对合金显微组织的影响;使用Image-Pro Plus v5.1(IPP)和Nano Measure图像分析软件,统计了组织中初生等轴α相(α_(p))及次生α相(α_(s))集束等的尺寸;使用原位SEM拉伸并结合EBSD分析技术,原位观察合金的变形行为,并对变形前后的晶体取向进行了表征;采用扫描电子显微镜,表征了不同冷却方式下材料的断口形貌特征,并借助TEM分析了组织中第二相分布情况。结果表明:在双重退火试验中,随着第一重退火温度的升高,IMI834合金α_(p)相含量及尺寸逐渐减小,α_(s)相集束尺寸逐渐增大;IMI834合金强度逐渐上升随后下降,延伸率及断面收缩率无明显变化,当第一重退火温度为1020℃时,IMI834钛合金在快冷和慢冷2种试验条件下强度均达到最高,快冷强度高出慢冷约50 MPa;α_(p)/α_(s)界面间β相的存在,能够保证晶界两侧在几何协调性因子较低的条件下仍能够进行滑移传递;快冷条件下试样断口的准解离形貌为椭球状或多边形状,而慢冷条件下其为长条形,α/β相界面第二相的析出差异是导致2种试样中准解离形貌不同的原因。
Effect of three heat treatments and two cooling ways on the microstructures and tensile properties of IMI834 titanium alloy were studied.An optical microscope was used to analyze the evolution of the microstructures of the alloy.The Image-Pro Plus v5.1(IPP)and Nano Measure image analysis software were used to calculate the size of equiaxedαphase(α_(p))and secondaryα(α_(s))clusters in the micro-structure.The crystal orientation and the deformation behavior of the alloy in situ before and after deformation were characterized using in-situ SEM tensile test and EBSD technology.The fracture morphology of the alloy in the different cooling ways was analyzed using SEM.The distribution of second phase was analyzed by TEM.The results show that in the double annealing test,with the increase of the first annealing temperature,the content and the size of α_(p) gradually decrease,but α_(s) clusters increase;the strength of IMI834 alloy first in-creases and then decreases.The elongation and reduction of area do not change significantly.When the first annealing temperature is 1020℃,the strength of IMI834 titanium alloy reaches the highest under the two test conditions of rapid cooling and slow cooling and the strength of the sample under rapid cooling is higher than that under slow cooling by about 50 MPa.In the early deformation stage of IMI834 alloy,the crystal rotation angle of fast cooling is generally higher than that of slow cooling.The existence of theβphase between the α_(p) and α_(s) can ensure that the slip transfer can still be carried out under low geometric compatibility factor.The quasi-cleavage facets of the fracture surface under fast cooling conditions is ellipsoidal or polygonal,and under slow cooling conditions,it is elon gated.The difference of the distribution of second phase in theα/βboundaries is the reason for the different morphologies.
作者
王宁
贾蔚菊
毛小南
毛成亮
张思远
周伟
李思兰
李倩
Wang Ning;Jia Weiju;Mao Xiaonan;Mao Chengliang;Zhang Siyuan;Zhou Wei;Li Silan;Li Qian(School of Materials Science and Engineering,Northeastern University,Shenyang 110819,China;Northwest Institute of Nonferrous Metal Research,Xi’an 710016,China)
出处
《稀有金属材料与工程》
SCIE
EI
CAS
CSCD
北大核心
2022年第8期3077-3088,共12页
Rare Metal Materials and Engineering
基金
西安市科技计划项目(2020YZ0002)。
关键词
IMI834钛合金
显微组织
热处理
几何协调性因子
准解离
IMI834 titanium alloy
microstructure
heat treatment
geometric compatibility factor
quasi-cleavage