期刊文献+

面向6G的通信感知一体化:基于无线电波的感知与感知辅助通信 被引量:1

6G integrated sensing and communication:wireless sensing and sensing assisted communication
下载PDF
导出
摘要 无线电波可以被利用来“看到”物理世界,实现对目标的定位、检测、成像、识别等感知功能,获取周围物理环境信息,挖掘通信能力,增强用户体验。6G将在一个系统中集成通信与感知,网络感知将使能6G成为未来万物智能的网络。介绍了通信感知一体化(Integrated Sensing and Communication,ISAC)的概念和典型的使用案例,讨论了在实践中ISAC的研究挑战。基于太赫兹提供了两个案例研究,说明了如何使用6G ISAC作为未来无线蜂窝基站和终端感知关键技术。 Radio waves can be used to“see”the physical world,implement sensing functions such as locating,detecting,imaging,and identifying objects.Obtaining information about the surrounding physical environment to form cyber world can help to explore communication capabilities and enhance user experience.6G will integrate sensing and communication in a single system.In this regard,network sensing will also enable 6G as the intelligent network of things in the future.This paper introduces the concept of integrated sensing and communication(ISAC)and typical use cases,then discusses the research challenges of implementing ISAC in practice.Based on terahertz,two case studies are provided to illustrate how 6G ISAC can be used as a key technology for future UE and base station sensing.
作者 何佳 周知 李先进 李欧鹏 陈雁 王光健 HE Jia;ZHOU Zhi;LI Xianjin;LI Oupeng;CHEN Yan;WANG Guangjian(Wireless Lab,2012 Lab,Chengdu Huawei Technologies Co.,Ltd.,Chengdu 610000,China;Ottawa Research Center,2012 Lab,Huawei Technologies Co.,Ltd.,Ottawa 30-3420,Canada)
出处 《信息通信技术与政策》 2022年第9期9-17,共9页 Information and Communications Technology and Policy
关键词 通信感知一体化 太赫兹 高精度成像 感知辅助通信 6G integrated sensing and communication THz high resolution imaging sensing assisted communication 6G
  • 相关文献

参考文献5

二级参考文献30

  • 1潘伟,刁华宗,井元伟.一种改进的实数自适应遗传算法[J].控制与决策,2006,21(7):792-795. 被引量:53
  • 2毛国君,段立娟,王实,等.数据挖掘原理与算法[M].北京:清华大学出版社,2006:183.
  • 3Dempster, A. P, Laird, N. M, Rubin, D. B. Maximum likelihood for incomplete data via the EM algorithm.[J] .J.R. Stat. Soc,1977,B, 39:1-38.
  • 4Liu C, Sun D X. Acceleration of EM Algorithm for Mixtures Models using ECME[J]. ASA Proceedings of the Stat. Comp. Session, 1997, 109-114.
  • 5Christophe Biemacki.Initializing EM Using the Properties of its Trajectories in Gaussian Mixtures [J]. Statistics and Computing,2004, 14, 3:267-279.
  • 6Patricia McKenzie, Michael Alder. Initializing the EM Algorithm for use in Gaussian Mixture Modelling [J]. Amsterdam Esevier Science BV, 1994:91-105.
  • 7Biernacki C, Celeux G, Govaert G. Choosing Starting Values for the EM Algorithm for Getting the Highest Likelihood in Multivariate Gaussian Mixture Models[J]. Computational Statistics and Data analysis, 2002.
  • 8Banfield J. D, Raftery A. E. Model-based Gaussian and non-Gaussian clustering [J]. Biometrics, 1993, 49:803-821.
  • 9Fraley C, A.E. Raftery.How many clusters? Which clustering method? -Answers via model-based cluster analysis [J]. The Computer Journal, 1998, 41:578-588.
  • 10D.W.Scott. On optimal and data-based histograms [J]. Biometrika, 1979, 66:605-610.

共引文献166

同被引文献13

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部