期刊文献+

基于差分和神经网络的同步辐射光源图像压缩方法 被引量:2

Synchrotron radiation source image compression method based on difference and neural network
下载PDF
导出
摘要 针对常见的图像无损压缩方法效果不佳问题,提出了一种基于图像差分和神经网络的同步辐射光源图像无损压缩方法。通过图像差分以减少图像序列内部的线性相关性,训练神经网络模型以学习图像序列内部的非线性相关性,得到预测概率分布,结合算术编码压缩。为加速预测和编码过程,将像素值按位分裂为两部分进行并行处理。基于上海同步辐射光源图像的测试表明,相较于便携式网络图形、JPEG2000和自由无损图像格式等,该方法可将压缩率提升20%以上,像素位分裂可以缩短30%的模型预测和编码时间。 For the common image lossless compression methods cannot work well.Thus,a lossless compression method for synchrotron radiation source images based on image difference and neural network was proposed.The image difference method was used to reduce the linear correlations among images.The neural network was trained to learn the nonlinear correlations in the images sequence,and the pixel value was compressed with arithmetic coding using the predicted distribution.To reduce the predicting time and coding time,the pixel value was splitted into two parts for parallel compression.The tests based on the images of Shanghai Synchrotron Radiation Facility show that the proposed method can improve more than 20% in compression ratio compared to PNG(portable network graphics),JPEG2000,FLIF(free lossless image format),and the pixel value split can reduce 30% of the time in predicting and coding.
作者 符世园 汪璐 程耀东 陈刚 FU Shiyuan;WANG Lu;CHENG Yaodong;CHEN Gang(Institute of High Energy Physics,Chinese Academy of Sciences,Beijing 100049,China;University of Chinese Academy of Sciences,Beijing 100049,China;TIANFU Cosmic Ray Research Center,Chengdu 610213,China)
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2022年第5期53-62,共10页 Journal of National University of Defense Technology
基金 中国科学院网络安全和信息化专项资助项目(CAS-WX2021PY-0106)。
关键词 图像压缩 无损 神经网络 图像差分 像素位分裂 image compress lossless neural network image difference pixel value split
  • 相关文献

参考文献2

二级参考文献11

  • 1武妍,万伟.基于遗传算法设计和训练人工神经网络的方法[J].红外与毫米波学报,2007,26(1):65-68. 被引量:13
  • 2BLACK S H, SESSLER T, GORDON E, et al. Un-cooled detector development at Raytheon[C]//Proc. of SPIE on Defense, Security, and Sensing, 2011, 8012: 80121A-80121A-12.
  • 3GERA Y, WANG Z, SIMON S, et al. Fast and context-free lossless image compression algorithm based on JPEG-LS[C]// Data Compression Conference (DCC), Proc. of IEEE, 2012: 396-396.
  • 4SWELDENS W. The lifting scheme: a construction of second generation wavelets[J]. SIAM Journal on Mathematical Analysis, 1998, 29(2): 511-546.
  • 5TAUBMAN D, MARCELLIN M. JPEG2000 Image Compression Fundamentals, Standards and Practice: Image Compression Fundamentals, Standards and Practice[M]. Springer Science & Business Media, 2012.
  • 6FAN X, HU B, LI Z, et al. Real-time compression system research based on DMD hadamard transform spectrometer[J]. Procedia Engineering, 2010, 7: 297-303.
  • 7LIAN C J, CHEN K F, CHEN H H, et al. Analysis and architecture design of block-coding engine for EBCOT in JPEG 2000[J]. IEEE Transactions on Circuits & Systems for Video Technology, 2003, 13(3): 219-230.
  • 8郭蕾,李东辉,缪志甫.结合压缩感知理论的快速分形编码[J].计算机工程与设计,2012,33(9):3494-3497. 被引量:3
  • 9周强,白廷柱,刘明奇,邱纯.基于可见光图像的近红外场景仿真[J].红外技术,2015,37(1):11-15. 被引量:9
  • 10高勇,尹琦,李存华.JPEG2000编码方案和结构划分研究[J].计算机与信息技术,2007(12):30-32. 被引量:1

共引文献11

同被引文献27

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部