期刊文献+

多尺度残差网络模型的开放式电阻抗成像算法

Open electrical impedance imaging algorithm based on multi-scale residual network model
下载PDF
导出
摘要 针对开放式电阻抗成像(OEIT)的图像重建算法存在的成像精度低、对噪声敏感、重建图像伪影面积较大等问题,提出基于多尺度残差网络模型的OEIT算法.该算法利用不同尺寸卷积核的残差块提取边界电压的多尺度特征;在完成特征拼接后,利用卷积实现深层信息融合,得到预测的电导率分布结果.使用有限元法搭建OEIT正问题模型,构造“边界电压-电导率分布”数据集,将所提算法与其他算法在该数据集和实际模型实验中进行比较.结果表明,所提算法使OEIT的重建精度、抗噪能力和定位目标准确性显著提高,并使检测目标的伪影面积缩小. An open electrical impedance tomography(OEIT)algorithm based on multi-scale residual neural network model was proposed,to improve the problems of OEIT image reconstruction algorithm,such as low imaging accuracy,sensitive to noise and large artifact area of reconstructed image.The algorithm used residual blocks with different sizes of convolution kernels to extract multi-scale features of boundary voltage.After the features were spliced,convolution was used to realize deep information fusion to obtain predicted conductivity distribution results.A model for the OEIT forward problem was built by the finite element method and a data set of"boundary voltageconductivity distribution"was constructed.The proposed algorithm was compared with other algorithms in the data set and actual model experiments.Results show that the reconstruction accuracy,anti-noise ability and target location accuracy of OEIT are improved significantly by using the proposed algorithm,while the artifact area of the target is reduced.
作者 刘近贞 陈飞 熊慧 LIU Jin-zhen;CHEN Fei;XIONG Hui(School of Control Science and Engineering,Tiangong University,Tianjin 300387,China;Tianjin Key Laboratory of Intelligent Control of Electrical Equipment,Tiangong University,Tianjin 300387,China)
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2022年第9期1789-1795,共7页 Journal of Zhejiang University:Engineering Science
基金 天津市教委科研计划项目(2019KJ014)。
关键词 开放式电阻抗成像(OEIT) 图像重建 深度学习 残差网络 多尺度特征 open electrical impedance tomography(OEIT) image reconstruction deep learning residual network multi-scale feature
  • 相关文献

参考文献1

二级参考文献14

  • 1RYO M, MAEDA K, ONDA T, et al. A new simple method for the measurement of visceral fat accumulation by bioelectrical impedance [J]. Diabetes Care, 2005, 28 (2) : 451 - 453.
  • 2SHIGA T, OSHIMA Y, KANAI-H, et al. A simple measurement method of visceral fat accumulation by bio- electrical impedance Analysis [C]// ICEBI, 2007. Aus- tria: Springer Berlin Heidelberg, 2007: 687- 690.
  • 3KATASHIMA M, Development of visceral-fat measur- ing apparatus using abdominal bioelectrical impedance: Validity of measuring principles[J]. Kenko Igaku, 2004, 119(3): 391-396.
  • 4YONEDA M, TASAKI H, TSUCHIYA N, et al. AStudy of Bioelectrical Impedance Analysis methods t'or practical visceral fat estimation [C] // Proceedings ofIEEE International Conference on Granular Computing. California: Is. n. ], 2007:622 - 627.
  • 5ANDERSON D R, BURNHAM K P. Understanding In- formation Criteria for Selection among Capture-Recapture or Ring Recovery Models [M]. Bird Study, London.. Taylor & Francis Group, 1999: S514- S521.
  • 6AKAIKE H. A new look at the statistical model identi- fication [J]. IEEE Transitions on Automatic Control, 1974, 19(6): 716-723.
  • 7MARUTSCHKE D M, NAKAJIMA H, TSUCHIYA N, et al. Causality-based transparency and accuracy in system modeling with human-machine collaboration [C]//World Automation Congress. Hawclii USA: IEEE, 2008:1-6.
  • 8FIGUEIRAS A, CADARSO-SUAREZ C. Application of Nonparametric Models for Calculating Odds Ratiosand Their Confidence Intervals for Continuous Expo- sures [J]. American Journal of Epidemioiogy, 2001, 154(3) : 264 - 275.
  • 9I.EFFONDRE K, ABRAHAMOWICZ M, SIEMIATY- CKI J. Modeling smoking history: a comparison of dif-ferent approaches [J]. American Journal of Epidemiolo-gy, 2002, 156(9): 813-823.
  • 10ISHIKAWA K, MAETANI S. Long-term outcome for 120 Japanese patients with Takayasus disease. Clini-cal and statistical analyses of related prognostic factors[J]. Circulation, 1994, 90(4) : 1855 - 1860.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部