期刊文献+

高架铁路客运站平天窗的多目标优化 被引量:2

Multi-objective Optimization of Flat Skylights in the Elevated Railway Station
下载PDF
导出
摘要 高架铁路客运站通常为大跨度建筑,需设置天窗。传统的天窗设计方法难以解决复杂的采光需求和节能需求构成的多目标问题。为实现高铁站平天窗的多目标优化,文中基于高架高铁站平天窗的前期设计参数设置,采用Rhino和Grasshopper平台、Ladybug建筑性能模拟工具、Octopus多目标优化工具构建了一套基于遗传算法的平天窗多目标优化方法。该方法经过确定变量、确定优化目标、构建模型和程序编写等步骤,用Rhino和Grasshopper建立简化的参数化模型,导入Ladybug工具进行性能分析,依据分析结果用Octopus工具进行迭代的多目标优化;在优化过程中能够自动地对模型参数化的部分进行不断变更和模拟,记录每次变更、模拟的结果并进行比较,最终找出最满足设定的多个目标的参数;将参数返回到参数化模型即可得到最优结果的模型及对应的建筑性能模拟结果。对广州白云站的候车空间进行建模,依据国内外主要采光规范的要求,将采光强度达标、采光均匀度达标、采光有效性尽量大、眩光发生可能性尽量小、太阳辐射量尽量小作为目标体系,使用文中提出的方法进行多目标优化。结果表明:相比于原方案,经该流程多目标优化后最终生成的方案在满足规范要求的采光强度条件下,采光均匀度、采光有效性、眩光发生可能性、太阳辐射量方面均有很大程度的改善。文中提出的方法具有广泛的应用场景和较强的灵活性,可以为相关研究提供参考。 Elevated railway stations are usually large-span buildings and require skylights.Traditional skylight design methods have difficulties in solving the multi-objective problem of complex requirements in lighting and energy-saving.In order to realize the multi-objective optimization of the flat skylight of the high-speed railway station,based on the pre-design parameter settings of the flat skylight of the elevated high-speed railway station,this paper constructed a set of genetic algorithm-based multi-objective optimization methods using Rhino and Grasshopper platforms,building performance simulation tool called Ladybug,and multi-objective optimization tool called Octo⁃pus.Multi-objective optimization method for flat skylight goes through the steps of determining variables,determining optimization objectives,building models and programming,using Rhino and Grasshopper to build a simplified para⁃metric model,importing the Ladybug tool for performance analysis,and using Octopus tool to carry out iterative multi-objective optimization according to the analysis results.The optimization process can automatically change and simulate the parameterized part of the model,and record and compare the results of each change and simula⁃tion.And finally,it finds out the parameters that best meet the set multiple objectives.Returning the parameters to the parametric model can yield the optimal model and the corresponding building performance simulation re⁃sults.Furthermore,an empirical analysis was carried out by taking Guangzhou Baiyun Station as an example.According to the requirements of the main lighting standards at home and abroad,the study first set the daylighting factor and the daylighting uniformity up to the standard,the useful daylighting illuminance as significant as pos⁃sible,the possibility of glare occurrence as small as possible,and the solar radiation as small as possible as the target system.Then it used the method for multi-objective optimization.The results show that compared with the original scheme,the final scheme meets the basic standard of daylighting factor and has better lighting uniformity,useful daylighting illuminance,glare occurrence possibility,and solar radiation under the lighting intensity conditions.The proposed method has a wide range of application scenarios and more flexibility and can provide references for related research.
作者 蒋涛 路洲 JIANG Tao;LU Zhou(School of Architecture,South China University of Technology,Guangzhou 510640,Guangdong,China;Architecture Design&Research Institute of SCUT Co.,Ltd.,South China University of Technology,Guangzhou 510640,Guangdong,China;State Key Laboratory of Subtropical Building Science,South China University of Technology,Guangzhou 510640,Guangdong,China)
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第7期13-24,共12页 Journal of South China University of Technology(Natural Science Edition)
基金 亚热带建筑科学国家重点实验室开放研究基金资助项目(2020KA01,2015ZB09) 广东省自然科学基金面上项目(2021A1515012378)。
关键词 高架铁路客运站 平天窗 多目标优化 广州白云站 elevated railway station flat skylight multi-objective optimization Guangzhou Baiyun Station
  • 相关文献

参考文献5

二级参考文献32

  • 12003北京规划建筑研讨(评论)会在京举行[J].建筑学报,2003(7):7-13. 被引量:2
  • 2马清亮,胡昌华.多目标进化算法及其在控制领域中的应用综述[J].控制与决策,2006,21(5):481-486. 被引量:23
  • 3吴献东,金晓明,徐志成,王树青.微粒群算法在模拟移动床色谱分离过程优化中的应用[J].化工自动化及仪表,2006,33(4):5-9. 被引量:5
  • 4TSAI S J,SUN T Y,LIU Chan-cheng,et al.An improved multi-objective particle swarm optimizer for multi-objective problems[J].Expert Systems with Applications,2010,37(8):5872-5886.
  • 5KUNDU P K,ZHANG yan,RAY A K.Multi-objective optimization of simulated countercurrent moving bed chromatographic reactor for oxidative coupling of methane[J].Chemical Engineering Science,2009,64(19):4137-4149.
  • 6KENNEDY J,EBERHART B C.Particle swarm optimization[C] //Proc of IEEE International Conference on Neural Networks.1995:1942-1948.
  • 7COELLO C A,PULIDO G T,LECHUCA M S.Handling multiple objectives with particle swarm optimization[J].IEEE Trans on Evolutionary Computation,2004,8(3):256-279.
  • 8COELLO C A,LECHUGA M S.MOPSO:a proposal for multiple objective particle swarm optimization[C] //Proc of IEEE Congress on Evolutionary Computation.Piscataway:IEEE Press,2002:1051-1056.
  • 9SHI Yu-hui,EBERHART R C.A modified particle swarm optimizer[C] //Proc of IEEE International Conference on Evolutionary Computation.Piscataway:IEEE Press,1998:69-73.
  • 10EBERHART R,KENNEDY J.A new optimizer using particle swarm theory[C] //Proc of the 6th International Symposium on Micro Machine and Human Science.1995:39-43.

共引文献226

同被引文献15

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部