摘要
提出了一种基于支持向量机(SVM)的两点光源定位技术。发送端利用现场可编程门阵列产生位置信息,编码并加载到对应的发光二极管(LED)驱动电路,接收端的图像传感器捕获两个LED的图像。在实际定位时,定位点的移动会导致接收光功率的变化,从而影响曝光度与曝光时间,继而无法准确提取条纹特征,因此提出了一种选择列像素的方法。利用SVM实现对LED的分类及准确识别,并利用可见光的三维成像定位算法得到目标的实际位置,最终在30 cm×30 cm×50 cm的空间范围内实现了精度为1~2 cm的定位。
In this paper,we propose a two-point light source location technology using a support vector machine(SVM).Here,the transmitter uses a field-programmable gate array to generate position information,encode and load it into the driving circuit of the corresponding light-emitting diode(LED)and the image sensor at the receiver captures two LED images.In the actual positioning,the movement of the positioning point changes the received light power,which affects the exposure degree and time,thereby causing inaccurate extraction of the fringe features.Therefore,our method selects column pixels since SVM is used to realize the classification and accurate recognition of LED and the actual position of the target is obtained using the three-dimensional imaging positioning algorithm of visible light.Finally,we obtained a positioning accuracy of 1-2 cm in the spatial range of 30 cm×30 cm×50 cm.
作者
张彬
万生鹏
张思军
张正平
钟海华
Zhang Bin;Wan Shengpeng;Zhang Sijun;Zhang Zhengping;Zhong Haihua(Jiangxi Engineering Laboratory for Optoelectronics Testing Technology,Nanchang Hangkong University,Nanchang 330063,Jiangxi,China;Key Laboratory of Nondestructive Testing Technology,Ministry of Education,Nanchang Hangkong University,Nanchang 330063,Jiangxi,China)
出处
《激光与光电子学进展》
CSCD
北大核心
2022年第16期331-338,共8页
Laser & Optoelectronics Progress
基金
国家自然科学基金(61465009)
江西省自然科学基金重点项目(20202ACBL202002)
江西省主要学科学术和技术带头人资助计划(20172BCB22012)。
关键词
机器视觉
可见光通信
室内定位
现场可编程门阵列
图像处理
机器学习
machine vision
visible light communication
indoor positioning
field programmable gate array
image processing
machine learning