摘要
在实际投资中,不确定性和现实约束影响着投资决策。为了度量实际投资中的不确定性,本文引入模糊变量,并采用下半方差度量投资组合的风险,考虑一个具有上下界限制、交易成本以及无风险资产借贷约束的均值-下半方差模糊投资组合模型。该模型是一个具有不等式约束的二次规划问题,使用不等式的旋转算法对该模型进行求解。最后,通过“滚动样本”方法,对上述模型与最小方差模型以及等比例模型进行对比与评价。结果表明,本文考虑的模型的夏普比率表现更优。
In order to measure the existing uncertainty in portfolio management,fuzzy variables are used to capture the uncertain returns of different securities in this paper.Therefore,this paper considers a lower semi-variance fuzzy portfolio model that takes into account threshold constraints,transaction cost and borrowing constraints.In the above model,the probabilistic standard semivariance is used to measure the risk.The model is a quadratic programming problem with inequality constraints,which is solved by the pivoting algorithm.Finally,based on a“rolling-sample”approach,the out-of-sample performance of the above model is compared with the minimum variance model and the isometric model.The result indicates the best comparative performance for the proposed model.
作者
张鹏
梁楚婷
ZHANG Peng;LIANG Chu-ting(School of Economics and Management,South China Normal University,Guangzhou 510o06,China)
出处
《模糊系统与数学》
北大核心
2022年第4期80-90,共11页
Fuzzy Systems and Mathematics
基金
广东省软科学项目(2019A101002052,2018A070712030,2019A101002066)
广东省社科项目(GD19CGL32)。
关键词
模糊投资组合模型
下半方差
借贷限制
旋转算法
夏普比率
Fuzzy Portfolio Selection
Lower Semi-variance
Borrowing Constraints
Pivoting Algorithm
Sharpe Ratio