期刊文献+

基于甲基化位点的肺腺癌预后预测模型的探索与建立

Exploration and establishment of the prediction model for lung adenocarcinoma prognosis based on DNA methylation sites
原文传递
导出
摘要 目的利用公共组学数据库挖掘并构建基于DNA甲基化位点的肺腺癌预后模型,并对模型的预测效果进行初步评价。方法癌症基因组图谱(the cancer genome atlas,TCGA)及基因表达谱(gene expression omnibus,GEO)数据库用于相关分析和验证,最小绝对值收敛和选择算子法(least absolute shrinkage and selection operator,LASSO)Cox回归模型用于确定与肺腺癌预后风险具有关联的甲基化位点,Cox回归用于甲基化位点与预后风险的关联性分析,Harrell’s C统计量用于评价模型的预测效果。结果甲基化位点cg02909790和cg19378330被纳入LASSO Cox最优模型。Cox比例风险回归模型结果显示,甲基化位点组合与肺腺癌预后的关联有统计学意义(HR=8.32,95%CI:2.41~28.69,P<0.001)。结合甲基化位点和临床信息建立的肺腺癌预后预测模型预测能力较好,Harrell’s C为0.81(95%CI:0.78~0.83)。结论基于甲基化位点cg02909790和cg19378330的肺腺癌预后模型的预测效果良好,可能是潜在的个体化肿瘤分子标志物。 Objective To explore and build a prediction model for the prognosis of lung adenocarcinoma based on DNA methylation sites according to the public omics database and evaluate the prediction efficacy of the prediction model.Methods The Cancer Genome Atlas(TCGA)and Gene Expression Omnibus(GEO)databases were used for analysis and validation.The least Absolute Shrinkage and Selection Operator(LASSO)Cox regression model was performed to screen DNA methylation sites associated with the prognosis of lung adenocarcinoma.Multivariate Cox regression was used to evaluate the relationship between methylation signature and prognosis of lung adenocarcinoma.The prognostic prediction model of lung adenocarcinoma was estimated using Harrell's C statistics.Results Two methylation sites(cg02909790 and cg19378330)associated with the prognosis of lung adenocarcinoma were selected by LASSO Cox regression.Cox regression analysis showed a significant relationship between methylation signature and lung adenocarcinoma prognosis(HR=8.32,95%CI:2.41-28.69,P<0.001).The C statis-tical value of the prognostic prediction model based on methylation signature for lung adenocarcinoma was 0.81(95%CI:0.78-0.83)according to Harrell's C statistical analysis.Conclusions The prediction model of lung adenocarcinoma based on cg02909790 and cg19378330 has a good prognostic prediction efficacy and may be potential personalized tumor molecular markers in the development and progression of lung adenocarcinoma.
作者 卢静雅 方子晗 曾畅怡 陈雪娇 王可 魏晟 LU Jing-ya;FANG Zi-han;ZENG Chang-yi;CHEN Xue-jiao;WANG Ke;WEI Sheng(Department of Epidemiology and Biostatistics,School of Public Health,Tongji Medical College of Huazhong University of Science&Technology,Wuhan 430030,China;School of Basic Medicine,Hubei University of Arts and Science,Xiangyang 441053,China)
出处 《中华疾病控制杂志》 CAS CSCD 北大核心 2022年第8期974-981,共8页 Chinese Journal of Disease Control & Prevention
基金 国家自然科学基金(81773520,82073661) 大学生创新训练计划(S2020105109031) 湖北文理学院教师科研能力培育基金(2020kypyfy030)。
关键词 公共组学数据库 甲基化位点 肺腺癌 预测模型 LASSO Cox回归模型 Public omics database Methylation signature Lung adenocarcinoma Prediction model LASSO Cox model
  • 相关文献

参考文献3

二级参考文献38

  • 1Zhou, Yuan,Ling, Xian-Long,Li, Shi-Wei,Li, Xin-Qiang,Yan, Bin.Establishment of a human hepatoma multidrug resistant cell line in vitro[J].World Journal of Gastroenterology,2010,16(18):2291-2297. 被引量:17
  • 2Buhlmann P, Kalisch M, Meier L. High-Dimensional Statistics with a View Toward Applications in Biology [ J ]. Annual Review of Statistics and Its Application, 2014,1 ( 1 ) :255-278.
  • 3Meinshausen N, Meier 1, Buhlmann P. P-values for high-dimen- sional regression [J]. Journal of the American Statistical Associa- tion, 2009,104(488 ) : 1671-1681.
  • 4Chatterjeea A, Lahiri SN. Bootstrapping lasso estimators [ J ]. Journal of the American Statistical Association, 2011,106 ( 494 ) : 608 -625.
  • 5Geer SVD, Buhlmann P, Ritov YA, et al. On asymptotically opti- mal confidence regions and tests for high-dimensional models [ J]. The Annals of Statistics, 2014,42 ( 3 ) : 1166-1202.
  • 6Lockhart R, Taylor J, Tibshirani ILl, et al. A significance test for the lass [ J]. The Annals of Statistics, 2014,2 (42) :413-468.
  • 7Meinshausen N, Btihlmann P. Stability Selection [ J]. Journal of the Royal Statistical Society:Series B, 2010,72(4) :417-473.
  • 8Voorman A, Shojaie A, Witten D. Inference in High Dimensions with the Penalized Score Test [ EB/OL ]. ( 2014-01-12 ) [ 2014-10-16]. http://arxiv, org/abs/1401.2678.
  • 9Tibishirani R. Regression shrinkage and selection [J]. J R Statist Soc B, 1996,58(1) :267-288.
  • 10Agresti A. Categorical Data Analysis [ M]. 2nd ed. John Wiley & Sons. Inc, 2002.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部