期刊文献+

一种基于工具坐标系的机器人运动学参数标定方法 被引量:5

A Kinematic-parameter Calibration Method of Robots Based on Tool Coordinate
下载PDF
导出
摘要 机器人末端执行器位姿误差在基础坐标系中表示时,误差模型中包含姿态误差与位置矢量的乘积项,影响了参数标定识别精度。以工具坐标系为参考系,给出一种基于指数积公式包含关节约束条件的机器人位姿误差标定模型,避免了姿态误差与位置矢量的乘积项对参数标定识别精度的影响。以UR5机器人为标定对象,采用LeciaAT960-MR激光跟踪仪为测量设备,进行参数标定试验。试验结果表明,经参数标定后UR5机器人位置误差模和姿态误差模的平均值分别减小了91.07%和89.16%。 To solve the problems that the error model contained the product of the orientation errors and the position vectors,which affected the accuracy of parameter calibration and recognition,when the pose errors of robot end-effectors were represented in the basic frame.A pose error calibration model of robots based on the POE including joint constraints was established where the tool frame was used as the reference frame,so as to avoid the influences of the product of orientation errors and the position vectors on the accuracy of parameter calibration and recognition.The UR5 robot was used as the calibration object,and the LeciaAT960-MR laser tracker was used as the measuring equipment to perform the parameter calibration tests.The test results show that the mean value of norms of the position errors and orientation errors of UR5 robot after calibrations are reduced by 91.07% and 89.16% respectively.
作者 高文斌 褚亚杰 余晓流 GAO Wenbin;CHU Yajie;YU Xiaoliu(School of Mechanical Engineering,Anhui University of Technology,Ma'anshan,Anhui,243032;Anhui Province Key Laboratory of Special Heavy Load Robot,Ma'anshan,Anhui,243032)
出处 《中国机械工程》 EI CAS CSCD 北大核心 2022年第18期2183-2189,共7页 China Mechanical Engineering
基金 国家自然科学基金(51605004)。
关键词 机器人 姿态误差 参数标定 工具坐标系 指数积 robot orientation error parameter calibration tool coordinate product of exponential(POE)
  • 相关文献

参考文献3

二级参考文献31

  • 1谭月胜,孙汉旭,贾庆轩,邵志宇.基于旋量理论及距离误差的机械臂标定新方法[J].北京航空航天大学学报,2006,32(9):1104-1108. 被引量:8
  • 2任永杰,邾继贵,杨学友,叶声华.利用激光跟踪仪对机器人进行标定的方法[J].机械工程学报,2007,43(9):195-200. 被引量:138
  • 3王东署,迟健男.机器人运动学标定综述[J].计算机应用研究,2007,24(9):8-11. 被引量:39
  • 4Dolinsky J U, Jenkinson I D, Colquhoun G J. Application of genetic programming to the calibration of industrial robots[J]. Computers in Industry, 2007, 58(3): 255-264.
  • 5Chen H P, Fuhlbrigge T, Choi S, et al. Practical industrial robot zero offset calibration[C]//IEEE Conference on Automa- tion Science and Engineering. Piscataway, NJ, USA: IEEE, 2008: 516-521.
  • 6Mustafa S K, Tao P Y, Yang G L, et al. A geometrical ap- proach for online error compensation of industrial manipula- tors[C]//IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Piscataway, NJ, USA: IEEE, 2010: 738-743.
  • 7Veitschegger W K, Wu C H. Robot accuracy analysis based on kinematics[J]. IEEE Journal of Robotics and Automation, 1986, 2(3): 171-179.
  • 8Zhuang H Q, Roth Z S, Hamano F. A complete and paramet- rically continuous kinematic model for robot manipulators[J]. IEEE Transactions on Robotics and Automation, 1992, 8(4): 451-463.
  • 9Okamura K, Park F C. Kinematic calibration using the product of exponentials formula[J]. Robotica, 1996, 14(4): 415-421.
  • 10Park F C. Computational aspects of the product-of-exponentials formula for robot kinematics[J]. IEEE Transactions on Auto- matic Control, 1994, 39(3): 643-647.

共引文献44

同被引文献63

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部