期刊文献+

一种具有学习机制的海鸥优化算法 被引量:3

An Improved Seagull Optimization Algorithm with Learning
下载PDF
导出
摘要 为了克服海鸥优化算法在求解高维问题时存在的收敛速度慢、容易早熟和解精度低等问题,提出一种具有学习机制的海鸥优化算法(ISOAL)。首先,设计了一种基于当前粒子X_(i)与种群均值状态X_(m)差异的迁移算子,提升早期个体对解空间的搜索范围。其次,引入非线性自适应参数A保证算法适合于复杂问题解空间的搜索,避免算法过早地陷入局部最优。最后,通过引入部分精英粒子执行反向学习,加强对种群内的最优粒子所在空间的勘探,提高算法的解精度。实验选择了CEC2017中的10个无约束测试函数检测算法的性能,并与HPSO-TS、V-DVGA、DADE、CMA-ES等算法进行对比,该组实验结果显示,ISOAL比其他算法具有更高的解精度和稳定性。针对张力弹簧问题进行实验,结果表明:ISOAL所获得的弹簧总代价比SOA降低了3.5%,弹簧的线圈直径和平均直径分别下降了5.7%和3.5%。ISOAL算法具有收敛速度快、精度高和鲁棒性的特点,适合求解较高维度的连续函数优化问题和带有约束的工程优化问题。 To overcome the weakness of slow convergence,prematureness and low accuracy of seagull optimization algorithm(SOA)in solving high-dimensional problems,an improved SOA with learning(ISAOL)was proposed.A migration operator based on the difference between the X_(i) and the X_(m) was designed,this could make X_(i) search wider solution spaces in early stage,and a nonlinear adaptive parameter A was introduced to ensure the algorithm suitable for the search of solution space of complex problems,which could prevent the algorithm from falling into local optimum too early.In the later stage,some elite individuals executed opposition based learning(OBL)to intensify the exploration of the space around the global optimal individual to improve the accuracy of solution.Ten unconstrained test functions in CEC2017 were selected to test the performance of the ISOA and compared with HPSO-TS,V-DVGA,DADE,CMA-ES and others.Testing results of this experiments showed that the ISOAL had higher accuracy and stability than other algorithms.Finally,experiments was carried out by using the tension spring problem.The results showed that the total cost of the spring,the coil diameter and the average diameter of the spring obtained by the ISOAL were reduced by 3.5%,5.7%and 3.5%than SOA,respectively.ISOAL had the attributes of fast convergence,high accuracy and robustness,fitting to solve higher dimensional function optimization problem and engineering optimization problems with constraints.
作者 王培崇 尹欣洁 李丽荣 WANG Peichong;YIN Xinjie;LI Lirong(School of Information Engineering,Hebei GEO University,Shijiazhuang 050031,China;Laboratory of AI and Machine Learning,Hebei GEO University,Shijiazhuang 050031,China;School of Art,Hebei GEO University,Shijiazhuang 050031,China)
出处 《郑州大学学报(工学版)》 CAS 北大核心 2022年第6期8-14,共7页 Journal of Zhengzhou University(Engineering Science)
基金 国家自然科学基金资助项目(61806069) 河北省高等学校科学技术研究项目(ZD2020344)。
关键词 海鸥优化算法 学习机制 非线性参数 反向学习 seagull optimization algorithm learning mechanism nonlinear parameter opposition-based learning
  • 相关文献

参考文献11

二级参考文献84

  • 1汪玉凤,王燚增.QBSO算法在PID参数优化的应用[J].辽宁工程技术大学学报(自然科学版),2020,39(2):166-171. 被引量:3
  • 2Price K, Storn R, Lampinen J. Differential evolution: A practical approach to global optimization[M]. Berlin: Springer-Verlag, 2005: 1-24.
  • 3Yang M, Li C H, Cai Z H, et al. Differential evolution with auto-enhanced population diversity[J]. IEEE Trans on Cybernetics, 2015, 45(2): 302-315.
  • 4Fan H Y, Lampinen J. A trigonometric mutation operation to differential evolution[J]. J of Global Optimization, 2003, 27(1): 105-129.
  • 5Mallipeddia R, Suganthana P N, Panb Q K, et al. Differential evolution algorithm with ensemble of parameters and mutation strategies[J]. Applied Soft Computing, 2011, 11(2): 1679-1696.
  • 6Civicioglu P. Backtracking search optimization algorithm for numerical optimization problems[J]. Applied Mathematics and Computation, 2013, 219(15): 8121-8144.
  • 7Qin A, Suganthan P. Self-adaptive differential evolution algorithm for numerical optimization[C]. IEEE Congress of Evolution on Computation(CEC 2005). Edinburgh: IEEE, 2005: 1785-1791.
  • 8Zhang J, Arthur C. JADE: Adaptive differential evolution with optional external archive[J]. IEEE Trans on Evolution Computation, 2009, 13(5): 945-958.
  • 9Wang Y, Li H X, Huang T W, et al. Differential evolution based on covariance matrix learning and bimodal distribution parameter setting[J]. Applied Soft Computing, 2014, 18: 232-247.
  • 10Kaplan D T, Peacock L G. Coarse-grained embeddings of time series: Random walks, Gaussian random processes, and deterministic chaos[J]. Physica D, 1993, 64(4): 431-454.

共引文献133

同被引文献28

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部