期刊文献+

稀疏优化二阶算法研究进展

PROGRESS OF SECOND-ORDER METHODS FOR SPARSE OPTIMIZATION
原文传递
导出
摘要 稀疏优化是最优化学科近十余年发展起来的一个崭新分支.它主要研究带有稀疏结构特征的优化问题,在大数据分析与处理、机器学习与人工智能、信号与图像处理、生物信息学等学科领域有广泛应用.然而,稀疏优化属于非凸非连续优化,是一个NP-难问题.一直以来,人们通常采用一阶算法求解大规模稀疏优化问题,并取得了丰富成果.为提高计算速度和求解精度,人们近几年创新发展了若干计算花费少的二阶算法,本文主要介绍与评述其研究进展,奉献给读者. Sparse optimization developed in the past ten years is a new branch of the optimization discipline.It mainly studies optimization problems with sparse structure characteristics,and is widely applied to many fields including machine learning and artificial intelligence,signal and image processing,bioinformatics.However,sparse optimization problem is nonconvex,noncontinuous and even NP-hard.First-order algorithms are commonly used to solve largescale sparse optimization problems,and have achieved rich results.In order to improve the calculation speed and solution accuracy,a number of second-order algorithms with low computational cost have been developed in recent years.This paper mainly introduces its research progress and is dedicated to readers.
作者 王锐 修乃华 Wang Rui;Xiu Naihua(Beijing International Center for Mathematical Research,Peking University,Beijing 100871,China;Department of Mathematics,School of Science,Beijing Jiaotong University,Beijing 100044,China)
出处 《数值计算与计算机应用》 2022年第3期314-328,共15页 Journal on Numerical Methods and Computer Applications
基金 国家自然科学基金(11971052,12131004) 北京自然科学基金(Z190002)资助。
关键词 稀疏优化 二阶算法 正则项 收敛性 Sparse optimization second-order algorithm regularization convergence analysis
  • 相关文献

参考文献4

二级参考文献113

  • 1Cands E, Tao T. Near optimal signal recovery from random projections: universal encoding strategies [J]. IEEE Transactions on Information Theory, 2006, 52(1): 5406-5425.
  • 2Donoho D. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52, 1289-1306.
  • 3Natarajan B K. Sparse approximate solutions to linear systems [J]. SIAM Journal on Com- puting, 1995, 24: 227-234.
  • 4Cohen A, Dahmen W, DeVore R A. Compressed sensing and best k-term approximation [J]. Journal of the American Mathematical Society, 2009, 22: 211-231.
  • 5Rudelson M, Vershynin R. Geometric approach to error correcting codes and reconstruction of signals [J]. International Mathematical Research Notices, 2005, 64: 4019-4041.
  • 6Compressive Sensing Resources. http://dsp.rice.edu/cs.
  • 7Donoho D, Huo X. Uncertainty principles and ideal atomic decompositions [J]. IEEE Trans- actions on Infor*mation Theory, 2001, 47: 2845-2862.
  • 8Gribonval R, Nielsen M. Sparse representations in unions of bases [J]. IEEE Transactions on Information Theory, 2003, 49(12): 3320-3325.
  • 9Zhang Y. A simple proof for recoverability of gl-minimization: go over or under? [R]. Rice University CAAM Technical Report TR05-09, 2005.
  • 10Kashin B S. Diameters of certain finite-dimensional sets in classes of smooth functions [J]. Izv. Akad. Nauk SSSR, Ser. Mat., 1977, 41(2): 334-351.

共引文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部