摘要
[目的]为适应原有火电机组对新能源电力消纳的需求,提高其调峰能力是关键因素之一。[方法]储热系统作为燃煤热电机组“热电解耦”的重要方式,评价其参数匹配性具有工程参考价值。文章采用一种耦合储热装置来增加燃煤机组深度调峰能力的方法,并结合热负荷以及电负荷的功率曲线,对储热装置参数的影响规律展开了系统研究。[结果]结果表明:以区域负荷曲线为典型案例,随着储热罐的储热容量和充放热速率参数的提高,储热系统对机组的热负荷调节能力先逐渐提升并在分别在112.75 MW和12937 MW·min时达到上限,此时深度调峰参数为77 MW左右;此外,储热容量与充放热速率具有一定的匹配关联,二者中瓶颈因素将直接制约系统的深度调峰性能。[结论]通过对储热和放热边界情景的积分,精确的展示了储热罐在辅助调峰过程的中作用,同时结合其运行策略的优化设计能够进一步分析储热辅助调峰系统的参数匹配关系,为后续火电机组耦合储热系统的参数设计提供参考。
[Introduction]In order to adapt to the demand of the original thermal power units for new energy power consumption,improving its peak regulating capacity is one of the key factors.The heat storage system is an important way of"thermoelectric decoupling"of coal-fired thermal power units,so it has engineering reference value to evaluate its parameter matching.[Method]A method of coupling heat storage device was used to increase the depth peak regulation capacity of coal-fired unit.Combined with the power curve of heat load and electric load,the influence law of heat storage device parameters was systematically studied.[Result]The results show that with the regional load curve as a typical case,when the heat storage capacity and charging and releasing rate parameters of the heat storage tank increase,the heat load regulation capacity of the unit reaches 112.75 MW and 12937 MW·min respectively,and the depth peak regulation parameter is about 110 MW.Besides,the heat storage capacity and the heat charging and discharge rate match,and the bottleneck factors will directly restrict the depth peak regulation performance of the system.[Conclusion]By integrating the boundary situation of heat storage and heat discharge,the role of the heat storage tank in the auxiliary peak regulation process is accurately demonstrated.Combined with the optimization design of its operation strategy,the parameter matching relationship of the heat storage auxiliary peak regulation system can be further analyzed to provide a reference for the parameter design of the coupled thermal storage system of thermal power units.
作者
孙浩程
宋民航
郭璞维
张长永
王金星
SUN Haocheng;SONG Minhang;GUO Puwei;ZHANG Changyong;WANG Jinxing(School of Energy,Power and Mechanical Engineering,North China Electric Power University,Baoding 071003,Hebei,China;State Key Laboratory of Multiphase Complex Systems,Institute of Process Engineering,Chinese Academy of Sciences,Beijing 100190,China;Hebei Innovation Center for Coal-fired power station Pollution Control(SanHe Power Plant Ltd.,CHN Energy),Langfang 065201,Hebei,China;WA Jidong Wear Resistance Technology Engineering(Tangshan)Co.,Ltd,Tangshan 063200,Hebei,China;School of Energy,Power and Mechanical Engineering,North China Electric Power University,Beijing 102206,China)
出处
《南方能源建设》
2022年第3期9-15,共7页
Southern Energy Construction
基金
国家自然科学基金资助项目“变负荷运行下旋流煤粉燃烧稳定性及NOx生成特性研究”(52006120)。
关键词
储热系统
凝汽机组
热电解耦
抽汽供暖
参数优化
heat storage system
steam condensing unit
thermoelectric decoupling
steam heating
parameter optimization