期刊文献+

基于高分子量聚醚大单体常温合成聚羧酸减水剂试验研究

Room temperature synthesis based on high molecular weight polyether macromonomer experimental study on polycarboxylate superplasticizer
下载PDF
导出
摘要 采用分子量为3000的甲基烯丙基聚氧乙烯醚(HPEG)为合成聚醚大单体,分别研究了酸谜比、合成起始温度及链转移剂用量对聚羧酸减水剂性能的影响。通过净浆流动度、混凝土坍落度以及扩展度为指标进行测试,结果表明,当设计体系酸谜比为4.35,合成温度区间为15~25℃,链转移剂用量为单体总量的1.75%,H_(2)O_(2)用量为单体总质量的0.8%时合成样品性能较好,HPEG3000合成聚羧酸减水剂初始分散性及保持能力较强,对比HPEG2400合成的聚羧酸减水剂有明显性能优势。 Methyl allyl polyoxyethylene ether(HPEG) with molecular weight of 3 000 was used to synthesize polyether macromonomer.The effects of acid ratio,synthesis starting temperature and the amount of chain transfer agent on the properties of polycarboxylate water reducer were studied.Tested by the fluidity of slurry,slump and expansion of concrete as indicators,the results show that when the acid-enrichment ratio of the design system is 4.35,the synthesis temperature range is 15~25 ℃,and the amount of chain transfer agent is 1.75% of the total monomers,when the amount of H_(2)O_(2)is 0.8% of the total monomer mass,the performance of the synthesized sample is better.The initial dispersibility and retention capacity of the HPEG3000 synthetic polycarboxylate water reducer are stronger,and the polycarboxylate water reducer synthesized by HPEG2400 has obvious performance advantages.
作者 王生辉 赵伟 李耀 冯恩娟 郭祥金 Wang Shenghui;Zhao Wei;Li Yao;Feng Enjuan;Guo Xiangjin(Linyi Conch New Material Technology Co.,Ltd.Linyi,276000,China)
出处 《水泥工程》 CAS 2022年第4期5-7,29,共4页 Cement Engineering
关键词 聚羧酸 HPEG3000 净浆流动度 混凝土流动性 polycarboxylic acid HPEG3000 slurry fluidity concrete fluidity
  • 相关文献

参考文献8

二级参考文献39

  • 1瞿金东,彭家惠,陈明凤,张建新,万体智.减水剂在水泥颗粒表面的吸附特性研究进展[J].建筑材料学报,2005,8(4):410-416. 被引量:42
  • 2肖雪清,黄雪红,胡玉娟.聚羧酸共聚物侧链结构对水泥分散性的研究[J].化学研究与应用,2005,17(6):825-828. 被引量:17
  • 3Collepardi M, Valente M. Recent developments in superplasticizers [C]. V. M. Malhotra ed. 8th CANMET/ACI International Conference on Superplasticizers and Other Chemical Admixtures in Concrete. USA: American Concrete Institute, 2006: 1- 14.
  • 4Spiratos N, Jolicoeur C. Trends in chemical admixtures for the twenty-first century [C]. V. M. Malhotra ed. 6th CANMET/ ACI International Conference on Superplasticizers and Other Chemical Admixtures in Concrete. USA: American Concrete Institute, 2000: 1-16.
  • 5I.Schober, R.J. Flatt. Optimizing polycarboxylate polymers [A]. In: V.M. Malhotra ed. 8th CANMET/ACI International Conference Superplasticizers and Other Chemical Admixtures in Concrete[C ]. USA: American Concrete Institute, 2006, SP-239: 169-184.
  • 6Y.F. Houst, P. Bowen, F. Perche, et al. Design and function of novel superplasticizers for more durable high performance concrete (superplast project). Cem. Concr. Res., 2008 (38): 1197-1209.
  • 7American Concrete Institute. Report on chemical admixtures for concrete (ACI212.3R-10). November 2010.
  • 8M. Collepardi, M. Valente. Recent developments in superplasticizers[A]. In: V. M. Malhotra ed. 8th CANMET/ACI International Conference on Superplasticizers and Other Chemical Admixtures in Concrete [C]. USA: American Concrete Institute, SP-239, 2006: 1-14.
  • 9E.Sakai. New trends in the development of chemical admixtures in Japan. J. Adv.Conr. Tech., (2006), 4(2):211-223.
  • 10A.Zingg, F.Winnefeld, L.Holzera, J.Pakusch, S.Beckerb, L. Gauckler. Adsorption of polyelectrolytes and its influence on the rheology, zeta potential, and microstructure of various cement and hydrate phases[J]. Journal of Colloid and Interface Science, 2008,323(2): 301-312.

共引文献101

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部