摘要
该文研究1-维p-Laplacian方程(|x′|^(p−2)x′)′+f(t,x)=0end{document}周期解的存在性和多解性,其中f(t,x)满足原点附近的次线性条件,即lim∣x∣→0f(t,x)∣x∣^(p−2)x=0.得到的存在性结果可以应用于经典方程x′′+f(t,x)=0.证明方法基于Poincaré-Birkhoff扭转定理.
In this paper,we obtain existence and multiplicity of periodic solutions for 1-dimensional p-Laplacian equation(|x′|^(p−2)x′)′+f(t,x)=0,where f∈C(R×R,R)is 2π-periodic in the first variable and satisfies the assumption f(t,x)∣x∣^(p−2)x→0,as∣x∣→0.The new existence results can be applied to situations in which the more classical equation x′′+f(t,x)=0.Proofs are based on Poincaré-Birkhoff twist theorem.
作者
王学蕾
Xuelei Wang(Department of Mathematics,College of Information Science and Engineering,Shandong Agricultural University,Shandong Taian 271018)
出处
《数学物理学报(A辑)》
CSCD
北大核心
2022年第5期1462-1472,共11页
Acta Mathematica Scientia
基金
国家自然科学基金(11671287,61573228)。