期刊文献+

Effect of chromium interlayer thickness on interfacial thermal conductance across copper/diamond interface

下载PDF
导出
摘要 The thermal conductivity of diamond particles reinforced copper matrix composite as an attractive thermal management material is significantly lowered by the non-wetting heterointerface.The paper investigates the heat transport behavior between a 200-nm Cu layer and a single-crystalline diamond substrate inserted by a chromium(Cr)interlayer having a series of thicknesses from 150 nm down to 5 nm.The purpose is to detect the impact of the modifying interlayer thickness on the interfacial thermal conductance(h)between Cu and diamond.The time-domain thermoreflectance measurements suggest that the introduction of Cr interlayer dramatically improves the h between Cu and diamond owing to the enhanced interfacial adhesion and bridged dissimilar phonon states between Cu and diamond.The h value exhibits a decreasing trend as the Cr interlayer becomes thicker because of the increase in thermal resistance of Cr interlayer.The high h values are observed for the Cr interlayer thicknesses below 21 nm since phononic transport channel dominates the thermal conduction in the ultrathin Cr layer.The findings provide a way to tune the thermal conduction across the metal/nonmetal heterogeneous interface,which plays a pivotal role in designing materials and devices for thermal management applications.
出处 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第11期2020-2031,共12页 矿物冶金与材料学报(英文版)
基金 financially supported by the National Natural Science Foundation of China (Nos. 51871014, 51571015) the National Youth Science Foundation, China (No. 51606193)
  • 相关文献

参考文献4

二级参考文献41

  • 1Yakel H L. Acta Cryst B [J], 1987,43: 230.
  • 2Patil S K R,Khare S Y, Tuttle B R et al. Phys Rev B[J], 2006, 73: 104 118.
  • 3Wu Zhijian, Zhao Erjuan, Xiang Hongping et al. Phys Rev B [J], 2007, 76: 054 115.
  • 4Zhou W, Liu L, Li B et al. Comput Mater Sci[J],2009,46: 921.
  • 5Nikolussi M, Shang S L, Gressmann T et al. Scripta Mater [J], 2008, 59: 814.
  • 6Jang J H, Kim I G, Bhadeshia H K D H. Comput Mater Sci [J], 2009, 44: 1319.
  • 7Yang Y, Lu H, Yu C et al. J Alloy Compd[J], 2009, 485: 542.
  • 8Gilman J J, Roberts BW. J Appl Phys[J], 1961,32: 1405.
  • 9Price D L, Cooper B R. Phys Rev B [J], 1989,39: 4945.
  • 10Liu Z L, Chen X R, Wang Y L. Physica B[J], 2006, 381: 139.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部