期刊文献+

基于边聚类的电力通信网Sybil攻击检测算法 被引量:4

Sybil attack detection algorithm for power communication network based on edge clustering
下载PDF
导出
摘要 针对电力通信网络频繁遭受Sybil攻击的问题,提出了一种基于K-means边聚类的Sybil攻击团体检测算法.通过优化边聚类和边介数的计算方法,提出了传统K-means聚类算法的改进方法,计算了通信网络中的聚类系数,根据合法用户的真实数量,建立更加精确的攻击边集合与真实边集合,从而初步检测出所有可疑的攻击边,并使用标签传播算法检测Sybil攻击行为所在的恶意团体.仿真结果表明,与经典的SybilLimit算法相比,在所有的攻击路径数量下,该Sybil攻击检测算法具有更加优秀的检测性能. In order to solve the problem that the power communication network had been frequently attacked by Sybil,a Sybil attackgroup detection algorithm based on K-means edge clustering was proposed.By optimizing the calculation methods of edge clustering and edge betweenness,an improved method in terms of traditional K-means clustering algorithm was suggested,and the clustering coefficient in the communication network was calculated.According to the real number of legitimate users,a more accurate set of attack edges and real edges was established so as to initially detect all suspicious attack edges.In addition,the label propagation algorithm was used to detect the evil group committing Sybil attack.The simulation results show that the as-proposed Sybil attack detection algorithm has better detection performance under all attack paths compared with the classic SybilLimit algorithm.
作者 党晓婧 张林 吕启深 彭浩 张柏松 DANG Xiao-jing;ZHANG Lin;Lü Qi-shen;PENG Hao;ZHANG Bai-song(Shenzhen Electric Power Science Research Institute,China Southern Power Grid,Shenzhen 518000,China;Business Research Center,Shenzhen Comtop Information Technology Co.Ltd.,Shenzhen 518034,China)
出处 《沈阳工业大学学报》 CAS 北大核心 2022年第5期502-506,共5页 Journal of Shenyang University of Technology
基金 国家自然科学基金项目(61033004) 中国南方电网有限公司深圳供电局有限公司科技项目(090000GS62161590).
关键词 社交网络 SYBIL攻击 K-MEANS算法 攻击检测 边介数 边聚类 欧氏距离 标签传播 social network Sybil attack K-means algorithm attack detection edge betweenness edge clustering Euclidean distance label propagation
  • 相关文献

参考文献7

二级参考文献60

  • 1YEE H C and RAHAYU Y. Monitoring parking space availability via ZigBee technology[J]. International Journal of Future Computer and Communication, 2014, 3(6): 377-380.
  • 2TSENG H W, LEE Y H, YEN L Y, et al. ZigBee (2.4 G) wireless sensor network application on indoor intrusion detection[C]. 2015 IEEE International Conference on Consumer Electronics, Taipei, China, 2015: 434-435.
  • 3DOUCEUR J R. The Sybil attack[C]. 1st International Workshop on Peer-to-Peer Systems, Cambridge, MA, USA, 2002: 251-260.
  • 4THAKUR P, PATEL R, framework for protection ZigBee[C]. 2015 Fifth and PATEL N. A proposed of identity based attack in International Conference on Communication Systems and Network Technologies, Gwalior India, 2015: 628-632.
  • 5ZHANG Q, WANG P, REEVES D S, et al. Defending against Sybil attacks in sensor networks[C]. 25th IEEE International Conference on Distributed Computing Systems Workshops, Columbus, Ohio, USA, 2005: 185-191.
  • 6NEWSOME J, SHI E, SONG D, et al. The Sybil attack in sensor networks: analysis & defenses[C]. Proceedings of the 3rd International Symposium on Information Processing in Sensor Networks, Berkeley, California, USA, 2004: 259-268.
  • 7DI PIETRO R, GUARINO S, VERDE N V, et al. Security in wireless ad-hoc networks - A survey[J]. Computer Communications, 2014, 51: 1-20.
  • 8ZENG K, GOVINDAN K, and MOHAPATRA P. Non-cryptographic authentication and identification in wireless networks[J]. IEEE Wireless Communications, 2010, 17(5): 56-62.
  • 9PATWARI N and KASERA S K. Robust location distinction using temporal link signatures[C]. Proceedings of the 13th Annual ACM International Conference on Mobile Computing and Networking, Montreal, Quebec, Canada, 2007: 111-122.
  • 10LIU Y and NING P. Enhanced wireless channel authentication using time-synched link signature[C]. INFOCOM 2012 Proceedings IEEE, Orlando, FL, USA, 20122636-2640.

共引文献113

同被引文献60

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部