期刊文献+

网络数据中心IT设备人工智能化运维应用 被引量:3

Artificial intelligence operation and maintenance applications of IT equipment in network data center
下载PDF
导出
摘要 现有智能化运维应用在测试过程中抗噪声能力差、测试精度低、稳定性差,并且花费时间较长,影响测试效果,因此对网络数据中心IT设备人工智能化运维应用进行研究.通过VRNN算法定位网络数据中心IT设备中的异常数据,结合可量化的安全评估模型进行人工智能化的运维应用测试.通过实验能够证明,提出方法的抗噪声能力较好,测试精度最高能够达到92%以上,测试过程μ_(z t)值可达到0.39,稳定性较好,并且测试所需时间短,最快在60 s可以完成3000个数据的测试,说明提出方法具有较好的实用性. In order to solve the problem that the existing intelligent operation and maintenance applications have poor anti-noise ability,low test accuracy,poor stability and long test time affecting the test effect,the artificial intelligent operation and maintenance applications of IT equipment in network data center were studied.The abnormal data in the IT equipment of the network data center were located through the VRNN algorithm,and the operation and maintenance applications of artificial intelligence were tested in combination with the quantifiable security evaluation model.Through experiments,it can be proved that the as-proposed method has good anti-noise ability,the highest test accuracy can reach more than 92%,the test process valueμ_(z t) can reach 0.39 with good stability,and the test time is shorter.The test of 3000 data can be completed within 60 s,showing that the as-proposed method has good practicability.
作者 张华兵 周英耀 徐磊 石宏宇 孙滨 ZHANG Hua-bing;ZHOU Ying-yao;XU Lei;SHI Hong-yu;SUN Bin(School of Electronics Engineering and Computer Science,Peking University,Beijing 100871,China;Digital Grid Research Institute,China Southern Power Grid,Guangzhou 510663,China;College of Information Engineering,Zhengzhou University of Industrial Technology,Zhengzhou 451150,China)
出处 《沈阳工业大学学报》 CAS 北大核心 2022年第5期541-545,共5页 Journal of Shenyang University of Technology
基金 河南省科技厅科技攻关支持项目(202102210361).
关键词 网络数据 网络测试 运维应用 异常数据 抗噪声能力 测试精度 安全性能 VRNN模型 network data network test operation and maintenance application abnormal data anti-noise ability test accuracy safety performance VRNN model
  • 相关文献

参考文献16

二级参考文献194

共引文献344

同被引文献28

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部