期刊文献+

室内退化场景下UWB双基站辅助LiDAR里程计的定位方法

Research on localization method of UWB assisted LiDAR odometry in degradation scene
下载PDF
导出
摘要 针对在结构特征稀疏且连续重复的退化场景下,基于激光雷达(LiDAR)的同时定位与建图技术(SLAM),由于约束缺失而无法恢复运动状态的问题,笔者提出利用超宽带(UWB)双基站辅助LiDAR里程计的定位方法。首先,利用退化因子判断LiDAR SLAM的退化方向及退化程度;然后,利用UWB测距值提供距离约束,并结合LiDAR里程计信息以构建状态方程和量测方程;最后,通过扩展卡尔曼滤波进行参数解算。实验结果表明,笔者提出的方法能够在室内退化场景下获得准确且低漂移定位结果,定位精度为亚米级,相较于LiDAR定位与地图构建(A-LOAM)算法,其均方根误差降低了22.3%,平均误差降低了21.23%。 Aiming at the problem that the Simultaneous Localization and Mapping based on Light Detection and Ranging(LiDAR SLAM)can not recover its motion state due to the lack of constraints in the degraded scene with sparse and continuous structural features,a location method of LiDAR odometry assisted by Ultra-Wide Band(UWB)dual base stations is proposed in this paper.Firstly,the degradation factor is used to judge the degradation direction and degree of LiDAR SLAM,then the UWB ranging value is used to provide distance constraints,and the LiDAR odometry information is combined to construct the state equation and measurement equation.Finally,the parameters are solved by extended Kalman filter.The experimental results show that the proposed method can obtain accurate and low drift positioning results in indoor degraded scenes.The positioning accuracy is sub meter level.Compared with a Lidar Odometry and Mapping(LOAM)algorithm,the root mean square error is reduced by 22.3%and the average error is reduced by 21.23%.
作者 徐爱功 程安莉 隋心 陈志键 王思语 高佳鑫 XU Aigong;CHENG Anli;SUI Xin;CHEN Zhijian;WANG Siyu;GAO Jiaxin(School of Geomatics,Liaoning Technical University,Fuxin,Liaoning 123000,China)
出处 《导航定位学报》 CSCD 2022年第5期1-9,共9页 Journal of Navigation and Positioning
基金 国家自然科学基金项目(42074012) 辽宁省重点研发计划项目(2020JH2/10100044) 辽宁省“兴辽英才计划”项目资助项目(XLYC2002101,XLYC2008034) 辽宁省教育厅基础研究项目(LJ2020JCL016)。
关键词 退化场景 超宽带 激光里程计 退化因子 室内组合定位 degradation scene ultra-w ide band LiDAR odometry degradation factor indoor combination
  • 相关文献

参考文献6

二级参考文献31

  • 1胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 2毛克诚,孙付平.扩展卡尔曼滤波与采样卡尔曼滤波性能比较[J].海洋测绘,2006,26(5):4-6. 被引量:12
  • 3GORDON N J,SALMOND D J, SMITH A F M. NovelApproach to Nonlinear/Non-Gaussian Bayesian State Es-timation [C] // IEE Proceedings F ( Radar and SignalProcessing). [ S.l. ] : IET Digital Library, 1993.
  • 4HAYKIN S E. Kalman Filtering and Neural Networks[M]. New York: John Wiley & Sons, 2001.
  • 5CHEN Z. Bayesian Filtering: From Kalman Filters toParticle Filters, and Beyond [ J]. Statistics, 2003 , 182(1): 1-6.
  • 6DOUCET A,GODSILL S, ANDRIEU C. On SequentialMonte Carlo Sampling Methods for Bayesian Filtering[J]. Statistics and Computing, 2000, 10(3) : 197-208.
  • 7ARULAMPALAM M S, MASKELL S, GORDON N,etal. A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking [ J ]. Signal Process-ing, IEEE Transactions on, 2002,50(2) : 174-188.
  • 8FREITAS de GOMES,FERDINAN DO J. Bayesian Meth-ods for Neural Networks [ D ]. [ S. 1. ] : University ofCambridge, 2003.
  • 9MERWE der R V,FREITAS de N,DOUCET A, et al. TheUnscented Particle Filter [J].NIPS, 2001 : 13: 584-590.
  • 10PITT M K, SHEPHARD N. Filtering via Simulation:Auxiliary Particle Filters [ J]. Journal of the AmericanStatistical Association, 1999,94(446) : 590-599.

共引文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部