期刊文献+

无码率码在无线传感器网络中的应用研究

Research on application of rateless code in wireless sensor network
下载PDF
导出
摘要 传统固定码率通信方案在大规模网络中存在时延和多反馈情况,影响无线传感器网络(wireless sensor network,WSN)的传输性能。无码率码能够根据信道状态实时改变传输码率,很好地解决这一问题。本文以多源多中继网络模型为基础,设计了基于累积无码率(accumulate rateless,AR)码的分布式协同传输机制,并对传输的广播、转发、译码等阶段进行了阐述和分析。结合使用外信息转移(extrinsic information transfer,EXIT)图和凸优化工具对方案中的AR码度分布进行了联合优化求解。仿真结果和对比分析表明,所提分布式AR码度优化方案,在错误平层上明显优于分布式卢比转换码方案,在译码性能上较现有Raptor方案和AR码单独度分布优化方案分别减小3.7%和1.3%的码率倒数。 The traditional fixed bit rate communication scheme has time delay and multiple feedback in large scale network,which affects the transmission performance of wireless sensor network(WSN).And rateless code,which changes its transmission rate according to real-time channel state,can solve this problem very well.This paper designs the distributed cooperative transmission mechanism in accumulate rateless(AR)code based on the multiple source relay network model,and makes the detailed elaboration and analysis of the transmission phases of broadcasting,forwarding and decoding.Then it optimized the degree distribution of AR code jointly in the scheme using the methods of extrinsic information transfer(EXIT)and convex optimization.By the simulation results and comparative analysis,the proposed distributed degree optimization scheme of AR code is obviously better than the LT scheme of classical distribution in error floor.And compared with the existing Raptor scheme and the AR code singleness distribution optimization scheme,the code rate reciprocal is reduced by 1.3%and 3.7%respectively.
作者 黄加佳 雷菁 黄英 HUANG Jiajia;LEI Jing;HUANG Ying(College of Electronic Science,National University of Defense Technology,Changsha 410073,China)
出处 《系统工程与电子技术》 EI CSCD 北大核心 2022年第10期3228-3234,共7页 Systems Engineering and Electronics
基金 国家自然科学基金(61702536) 湖南省自然科学基金面上项目(2021JJ30777)资助课题。
关键词 无线传感器网络 物联网 无码率码 凸优化 度分布 wireless sensor network(WSN) internet of things(IoT) rateless code convex optimization degree distribution
  • 相关文献

参考文献2

二级参考文献19

  • 1Byers J W, Luby M, Mitzenmacher M. A digital fountain ap proach to asynchronous reliable multicast[J]. IEEE Journal on Selected Areas in Communications, 2002, 20(8) : 1528 - 1540.
  • 2Luby M. LT codes[C]//Proc, of the IEEE Symposium on Foundations of Computer Science, 2002:271 -280.
  • 3Garcia-Frias J, Zhong W. Approaching Shannon performance by iterative decoding of linear codes with low-density generator ma- trix[J]. IEEE Communications Letters, 2003, 7(6) : 266 - 268.
  • 4Mackay D J C. Good error-correcting codes based on very sparse matrices[J]. IEEE Trans. on Information Theory, 2002, 45 (2): 399 - 431.
  • 5Palanki R, Yedidia J S. Rateless codes on noisy channels[C]// Proc. of the International Symposium on Information Theory, 2004: 37-42.
  • 6Shokrollahi A. Raptor codes[J]. IEEE Trans. on Information Theory, 2006, 52(6): 2551- 2567.
  • 7Chen S L, Zhang Z Y, Zhu L L, et al. Accumulate rateless codes and their performances over additive white Gaussian noise channel[J]. IET Communications, 2013, 7(4) : 372 - 381.
  • 8Jenkac H, Mayer T, Stockhammer T, et al. Soft decoding of LT-codes for wireless broadcast[C]//Proc, of the IST Mobile Summit, 2005 : 369 - 374.
  • 9Grant A, Land I, and Wang G, Iteration-constrained design of IRA codes[C]//Proc, of the International Zurich Seminar on Communications, 2012 : 67 - 70.
  • 10Smith B, Ardakani M, Yu W, et al. Design of irregular LDPC codes with optimized performance-complexity tradeoff[J]. IEEETrans. on Communications, 2010,58(2) ;489 - 499.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部