期刊文献+

IRS辅助的安全通信系统波束成形嵌套优化算法 被引量:7

Beamforming Nested Optimization Algorithm for IRS-assisted Secure Communication Systems
下载PDF
导出
摘要 智能反射面(Intelligent Reflecting Surface,IRS)是一种通过重新配置无线传播环境,提高无线通信网络安全性的绿色通信新技术。该文针对IRS辅助的多输入单输出安全通信系统,考虑在合法用户保密率约束下,联合优化基站处的发射波束成形和IRS处无源移相器的反射波束成形,使基站的发射功率最小。为了求解多变量耦合的非凸优化问题,我们提出了拉格朗日函数和粒子群嵌套优化算法,使用粒子群算法搜索IRS的反射波束成形,拉格朗日函数求解对应的发射波束成形,获得非凸优化问题的次优解。论文仿真比较了不同算法下基站所需的发射功率,结果表明所提算法基站所需发射功率更低。 Intelligent Reflecting Surface(IRS)is a new green communication technology,improving the security of wireless communication networks by reconfiguring the wireless communication environment.In this work,we propose to minimize the transmit power of the Base Station(BS)for the IRS-assisted multiple-input single-output security communication system.Constrained by the secrecy rate of the legitimate user,we jointly optimize the transmit beamforming at the BS and the reflect beamforming of passive phase shifters at the IRS.A Lagrangian function and particle swarm nested optimization algorithm is proposed to solve the non-convex optimization problem with multi-variable coupling.We search the reflect beamforming at the IRS by particle swarm algorithm and solve the corresponding transmit beamforming by a Lagrangian function.In this way,we can obtain a suboptimal solution to the non-convex optimization problem.Simulations are performed on the required transmit power of the BS under different algorithms,showing that the proposed algorithm requires lower transmitting power.
作者 马好好 解培中 李汀 MA Haohao;XIE Peizhong;LI Ting(School of Communication and Information Engineering,Nanjing University of Posts and Telecommunications,Nanjing,Jiangsu 210003,China)
出处 《信号处理》 CSCD 北大核心 2022年第8期1728-1736,共9页 Journal of Signal Processing
基金 国家自然科学基金(61771254,61871238)。
关键词 智能反射面 安全通信 波束成形 嵌套优化 intelligent reflecting surface secure communication beamforming nested optimization
  • 相关文献

参考文献2

二级参考文献13

  • 1曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338. 被引量:160
  • 2高尚,杨静宇,吴小俊,刘同明.基于模拟退火算法思想的粒子群优化算法[J].计算机应用与软件,2005,22(1):103-104. 被引量:51
  • 3王俊伟,汪定伟.粒子群算法中惯性权重的实验与分析[J].系统工程学报,2005,20(2):194-198. 被引量:86
  • 4杨亚平,曾建潮.微粒群与单纯形相结合的混合优化[C]//2005年中国模糊逻辑与计算智能联合学术会议论文集.2005,804—807.
  • 5Kennedy J,Eberhart R C.Particle Swarm Optimization[C]//Proc.of IEEE Int'l.Conf.on Neural Networks,Piscataway.IEEE Service Center,1995:1942-1948.
  • 6Shi Y,Eberhart R C.A Modified Particle Swarm Optimization[C] //Proceedings of the Congress on Evolutionary Computation,Piscataway.IEEE Press,1998:69-73.
  • 7Shi Y,Eberhart R C.Empirical Study of Particle Swarm Optimization[C]//Proceedings of the Congress on Evolutionary Computation,Piscataway.IEEE Service Center,1999:1945-1950.
  • 8Ratnaweera A,Halgamuge S K,Watson H C.Self-organizing Hierarchical Particle Swarm Optimizer With Time-varying Acceleration Coefficients[J].IEEE Transactions on Evolutionary Computation,2004,8(3):240-255.
  • 9Xie X F,Zhang W J,Yang Z L.A Dissipative Particle Swarm Optimization[C]//Proceedings of the Congress on Evolutionary Computation (CEC),Hawaii,USA.2002:1456-1461.
  • 10Zhang W J,Xie X F.DEPSO:Hybrid Particle Swarm with Differential Evolution Operator[C]//Proc.of IEEE Int.Conf.on Systems,Man & Cybernetics,Washington D C,USA.2003:3816-3821.

共引文献79

同被引文献31

引证文献7

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部