期刊文献+

磁阻驱动微定位台复合前馈控制与教学应用

Compound Feedforward Control and Teaching Application of Micropositioning Platform Driven by Magnetoresistance
下载PDF
导出
摘要 为了克服麦克斯韦驱动柔顺微定位平台在大行程范围内存在的低阻尼谐振和动力学特性差异等问题,利用相位超前校正PI反馈控制+动力学前馈控制的复合闭环控制方法对其进行了高精度控制。首先,搭建了麦克斯韦驱动微定位平台,并针对不同工作点位进行了动力学模型辨识。然后,为提高系统相对稳定性,设计了含相位超前校正环节的PI反馈控制器。同时,利用辨识获得的动力学逆模型进行前馈补偿来进一步消除谐振的影响。最后,利用所提出的控制方法进行了跟踪实验并与其他方法进行了对比。实验结果表明:相比于PID控制,该控制器的表现更好,能够较好地满足大行程微纳米定位跟踪精度高、速度快、抗干扰能力强的要求。此外,所设计的定位平台也可以应用于控制理论相关课程实验,能够较好地解决控制类课程实验平台短缺等问题。 In order to overcome the problems of low damping resonance and dynamic characteristics difference of Maxwell driven compliant micropositioning platform in large stroke range, the compound closed-loop control method of phase advance correction PI feedback control+dynamic feedforward control is used to control it with high precision. Firstly, the micro positioning platform driven by Maxwell is built, and the dynamic model identification is carried out for different working points. Then, in order to improve the relative stability of the system, a PI feedback controller with phase advance correction is designed. At the same time, the dynamic inverse model obtained by identification is used for feedforward compensation to further eliminate the influence of resonance. Finally, the tracking experiment is carried out by using the proposed control method and compared with other methods. The experimental results show that the performance is better than PID control. It can better meet the requirements of high precision, high speed and strong anti-interference ability of large stroke micro/nanopositioning and tracking. In addition, the positioning platform designed can also be applied to the teaching aids of control theory related courses, which can better solve the problems such as the shortage of experimental platforms for control courses.
作者 周俊 陆晓伟 赖磊捷 ZHOU Jun;Lu Xiao-wei;LAI Lei-jie(School of Mechanical and Automotive Engineering,Shanghai University of Engineering Science,Shanghai 201600,China;Technology Co.,Ltd.,Hangzhou 310023,China)
出处 《机械工程与自动化》 2022年第5期163-165,共3页 Mechanical Engineering & Automation
基金 上海工程技术大学大学生创新训练项目(cx2101006)。
关键词 麦克斯韦驱动器 复合前馈控制 微定位平台 Maxwell actuator compound feedforward control micropositioning platform
  • 相关文献

参考文献1

二级参考文献98

  • 1Derby B. Printing and prototyping of tissues and scaffolds. Science, 2012, 338:6109.
  • 2Lewis J A, Ahn B Y. Device fabrication: Three-dimensional printed electronics. Nature, 2015, 518:42-43.
  • 3Compton B G, Lewis J A. 3D-Printing of lightweight cellular composites. Adv Mater, 2014, 26:5930.
  • 4Kawata S, Sun H B, Tanaka T, et al. Finer features for functional microdevices. Nature, 2001, 412:697-698.
  • 5Campo A, Arzt E. Fabrication approaches for generating complex micro- and nanopatterns on polymeric surfaces. Chem Rev, 2008, 108: 911-945.
  • 6Armand M, Tarascon J M. Building better batteries. Nature, 2008, 451:652-657.
  • 7Cui B. Recent Advances in Nanofabrication Techniques and Applications. Rijeka: InTech, 2011. 173-195.
  • 8Verschuuren M A, Sprang H A, Polman A. Large-area nanopatterns: improving LEDs, lasers, and photovoltaics. Nanotechnology, 2011, 22: 505201.
  • 9Ahn S, Guo L. Large-area roll-to-roll and roll-to-plate nanoimprint lithography: A step toward high-throughput application of continuous nanoimprinting. ACS Nano, 2009, 3:2304-2310.
  • 10Zhang Y L, Chen Q D, Xia H, et al. Designable 3D nanofabrication by femtosecond laser direct writing. Nano Today, 2010, 5:435448.

共引文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部