期刊文献+

关于可测叶状结构空间上两种线性结构的刚性

Rigidity about two linear structures on the space of measured laminations
下载PDF
导出
摘要 通过黎曼曲面的双曲长度函数与极值长度函数,将可测叶状结构空间实现为Teichmüller空间的余切空间,从而诱导了可测叶状结构空间上的两种线性结构。证明了这两种线性结构都具有刚性性质,也即不同的黎曼曲面诱导不同的线性结构。 By modeling the space of projective measured laminations in the cotangent space to Teichmüller space via hyperbolic length functions and extremal length functions,we associate two classes of linear structures to the space of measured laminations.We prove that both of these two linear structures are rigid:the induced linear structures on different Riemann surfaces are different.
作者 江蔓蔓 JIANG Manman(Department of Basic Courses,Guangzhou Maritime University,Guangzhou 510725,China)
出处 《中山大学学报(自然科学版)(中英文)》 CAS CSCD 北大核心 2022年第5期144-149,共6页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 国家自然科学基金(11771456,11901130)。
关键词 TEICHMÜLLER空间 可测叶状结构 线性结构 双曲长度 极值长度 Teichmüller space measured laminations linear structures hyperbolic length extremal length

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部