摘要
针对麦克纳姆轮全向移动机器人实际系统模型中广泛存在的未建模动态、非线性摩擦和外界未知干扰等显著影响轨迹跟踪控制性能的不确定性,提出基于扩张状态观测器的广义预测控制。将所有干扰看做一个扩张状态量,通过对扰动量进行在线估计并实时补偿,提高了轨迹跟踪控制器的抗干扰能力。与基于卡尔曼滤波的广义预测控制器进行对比,仿真结果表明,所提出的方法可以有效抑制参数摄动和未知干扰的影响,提高麦克纳姆轮全向移动机器人轨迹跟踪控制器抗干扰性能。
Aiming at the uncertainties of the trajectory tracking control performance,such as unmodeled dynamics,nonlinear friction,and external unknown disturbance,which widely exist in the actual system model of the mecanum wheel omnidirectional mobile robot,a generalized predictive control based on extended state observer is proposed.The disturbance was regarded as an extended state variable,and the disturbance momentum was estimated online and compensated in real-time.The anti-interference ability of the trajectory tracking controller was improved.Compared with the generalized predictive controller based on the Kalman filter,the simulation results show that the proposed method can effectively suppress the influence of parameter perturbation and unknown disturbance,and improve the anti-interference performance of the trajectory tracking controller for the mecanum wheel omnidirectional mobile robot.
作者
税懿
杨永峰
向国菲
佃松宜
SHUI Yi;YANG Yong-feng;XIANG Guo-fei;DIAN Song-yi(School of Electrical Engineering,Sichuan University,Chengdu Sichuan 610065,China;Quzhou Power Supply Company,State Grid Zhejiang Electric Power Co.,LTD.,Quzhou Zhejiang 324000,China)
出处
《计算机仿真》
北大核心
2022年第8期415-419,共5页
Computer Simulation
基金
中央高校基本科研业务费资助项目(2018CDZG-17)。
关键词
移动机器人
轨迹跟踪
广义预测控制
扩张状态观测器
扰动控制
Mobile robots
Track tracking
Generalized predictive control
Extended state observer
Disturbance control