期刊文献+

Investigation of Ag(Ga,In)Se_(2)as thin-film solar cell absorbers:A first-principles study 被引量:1

原文传递
导出
摘要 Using first-principles calculations,the structural,electronic,and defect properties of AgInSe_(2)(AIS),AgGaSe_(2)(AGS),and their alloys(AIGS)are systematically studied and compared with their Cu counterparts as potential candidates for thin-film solar cell absorbers.The bandgap energies of AIS(1.24 eV)and AGS(1.84 eV)are larger than their Cu counterparts,despite their larger lattice parameters.According to the Shockley-Queisser theory,AIS or AIGS could be more suitable for solar-cell-absorber materials than their Cu counterparts.However,after investigating the band structures and intrinsic defect properties of AIS and AGS,we find that,(i)AIS and AGS have large negative crystal field splitting,thus low density of states near the valence band maximum(VBM);(ii)similar to the Cu counterparts,Ag vacancy(V_(Ag))is the main hole-carrier provider,while In_(Ag)(or Ga_(Ag))serves as the hole-carrier killer in p-type AIS(or AGS).However,because the positions of theVBM and conduction band minimum of AIS(or AGS)are lower than those of Cu In Se_(2)(CIS)[or Cu Ga Se_(2)(CGS)],the compensation of the p-type doping in AIS(or AGS)is more severe.Thus,the p-type doping of AIS(or AIGS)is more difficult than that of CIS(or CIGS),which is consistent with the doping limit rule.To improve the p-type doping of the AIS(or AIGS)as the solar-cell absorber,thus,improve the power conversion efficiency(PCE),the Ag-rich/(In,Ga)-poor/Se-rich growth condition is preferred.Alloy engineering of AIS with AGS can enhance the PCE because it can tune the bandgap energy of the absorber and band alignment at the absorber/buffer interface.More importantly,we suggest that for AIS(or AIGS)solar cell,the traditional buffer material of Cd S is not suitable anymore due to the large conduction band offset between AIS and Cd S.A new buffer layer material with a lower conduction band edge is necessary for better electron transport in AIS(or AIGS)solar cell.
出处 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2022年第10期101-108,共8页 中国科学:物理学、力学、天文学(英文版)
基金 supported by the National Natural Science Foundation of China(Grant Nos.11991060,12088101,and U1930402) National Supercomputer Center in Tianjin is acknowledged for computational support。
  • 相关文献

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部