期刊文献+

基于L_(1/2)范数的单比特SAR成像重建算法

1-bit SAR Imaging Reconstruction Algorithm Based on L_(1/2)-norm
下载PDF
导出
摘要 单比特技术在合成孔径雷达成像上具有良好的抗噪性,大多数单比特重建算法使用L_(1)或L_(2)范数作为稀疏正则化。文中提出了能获得更好稀疏解的L_(1/2)范数,使用交替方向乘子法对回波信号进行重构,通过仿真实验和实际回波图验证了其性能。相较于固定阈值,变阈值能保留目标反射系数的一部分幅值信息,因此文中进一步使用了自适应阈值来最大程度地接近回波数据。仿真结果显示:与时变阈值算法相比,恢复出的图像与原图像的误差更小,并且在L_(1/2)范数下具有更加明显的效果,在低信噪比时,自适应阈值相较于时变阈值也展现出了更好的性能。 1-bit technique has good noise immunity on synthetic aperture radar imaging.Most 1-bit reconstruction algorithms use L_(1) or L_(2) norm as sparse regularization.In this paper,a L_(1/2)-norm that can obtain better sparse solutions is proposed,an alternating direction multiplier method is used to reconstruct the echo signal,and its performance is verified by simulation experiments and actual echo diagrams.Compared with the fixed threshold,the variable threshold can retain partial amplitude information of the target reflection coefficient.Thus an adaptive threshold is further used to approximate the echo data to the greatest extent.The simulation results show that,compared with the time-varying threshold algorithm,the error between the restored image and the original image is smaller,and a more obvious effect under the L_(1/2) norm is gotton.When the signal-to-noise ratio is low,the adaptive threshold also performs better than the time-varying threshold.
作者 田梦茹 刘发林 贾远航 翟勇飞 杨弘毅 TIAN Mengru;LIU Falin;JIA Yuanhang;ZHAI Yongfei;YANG Hongyi(Department of Electronic Engineering and Information Science,University of Science and Technology of China,Hefei 230027,China;Key Laboratory of Electromagnetic Space Information,Chinese Academy of Sciences,Hefei 230027,China)
出处 《现代雷达》 CSCD 北大核心 2022年第8期1-7,共7页 Modern Radar
关键词 单比特 L_(1/2)范数 交替方向乘子法 自适应阈值 1-bit L_(1/2)-norm alternating direction method of multipliers adaptive threshold
  • 相关文献

参考文献1

二级参考文献12

  • 1Candès, Emmanuel J.,Romberg, Justin,Tao, Terence.Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory . 2006
  • 2Boufounos P T,Baraniuk R G.1-bit compressive sensing. 42nd Annual Conference on Information Sciences and Systems . 2008
  • 3Boufounos P T.Greedy sparse signal reconstruction from sign measurements. Signals,Systems and Computers2009 Conference Record of the Forty-Third Asilomar Conference on .
  • 4Jun Fang,Yanning Shen,Hongbin Li,Zhi Ren.??Sparse signal recovery from one-bit quantized data: An iterative reweighted algorithm(J)Signal Processing . 2014
  • 5YANIV PLAN,ROMAN VERSHYNIN.??One‐Bit Compressed Sensing by Linear Programming(J)Comm. Pure Appl. Math. . 2013 (8)
  • 6JACQUES L,LASKA J N,BOUFOUNOS P T,et al.Robust 1-bit compressive sensing via binary stable embeddings of sparse vectors. IEEE Transactions on Information Theory . 2013
  • 7Fornaro, Gianfranco,Pascazio, Vito,Schirinzi, Gilda.Synthetic aperture radar interferometry using one bit coded raw and reference signals. IEEE Transactions on Geoscience and Remote Sensing . 1997
  • 8Laska, Jason N.,Wen, Zaiwen,Yin, Wotao,Baraniuk, Richard G.Trust, but verify: Fast and accurate signal recovery from 1-Bit compressive measurements. IEEE Transactions on Signal Processing . 2011
  • 9Tropp, Joel A.,Gilbert, Anna C.Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory . 2007
  • 10Hale, Elaine T.,Yin, Wotao,Zhang, Yin.Fixed-point continuation for 1 1 -minimization: Methodology and convergence. SIAM Journal on Optimization . 2008

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部