期刊文献+

基于卷积神经网络的大学男生体脂率预测

Prediction of body fat percentage of male undergraduates based on convolutional neural network
下载PDF
导出
摘要 建立混合数据输入的卷积神经网络回归模型,利用图像和BMI数据预测体脂率,构建混合数据输入的CNN回归模型,测试模型的精确度。解决以往体脂率预测模型无法同时适用于健身群体和非健身群体的问题。结果显示:构建的混合数据输入的CNN回归模型预测精确度达到94.62%,绝对误差为1.57%,要优于单纯用BMI作为自变量构建的线性回归模型或ANN回归模型。可见,建立的混合数据输入的CNN回归模型,预测体脂率的精确度较高,能同时适用于大学男生健身群体和非健身群体,具有较高的便捷性、经济性和实用性。 In order to solve the previous body fat percentage prediction model problem that cannot be applied to fitness groups and non-fitness groups at the same time,this paper establishes a convolution neural network regression model with mixed data,and predict the body fat percentage by using image and BMI data.The results show the prediction accuracy of CNN regression model with mixed data was 94.62%and the absolute error was 1.57%,which was better than linear regression model with BMI as independent variable or ANN regression model.The CNN regression model with mixed data has high accuracy in predicting body fat percentage,can be applied to both fitness group and non-fitness group,and has convenience,economy and practicability.
作者 郝霖霖 赵喜迎 HAO Linlin;ZHAO Xiying(Fudan University,Shanghai 200433,China;Nanjing Xiaozhuang College,Nanjing 211171,Jiangsu,China)
出处 《辽宁体育科技》 2022年第5期76-84,共9页 Liaoning Sport Science and Technology
基金 教育部人文社会科学研究项目(项目编号:18YJC890007) 教育部人文社会科学研究青年基金项目(项目编号:19YJC890062)。
关键词 体脂百分比 卷积神经网络 身体质量指数 大学男生 body fat percentage convolution neural network BMI male undergraduate
  • 相关文献

参考文献5

二级参考文献43

  • 1赵军,金晓峰,陈志强.大学男生身体体积的测量与回归方程的优选研究[J].中国体育科技,2005,41(3):132-133. 被引量:4
  • 2陈玉平,刘雪琴,蔡德鸿.骨质疏松症知识问卷的信度和效度测定[J].中国骨质疏松杂志,2005,11(3):339-341. 被引量:148
  • 3贺杰,漆正堂,罗艳蕊.大学生体脂百分比测量及回归方程的优选[J].中国临床康复,2006,10(48):28-30. 被引量:10
  • 4马军,冯宁,阿布都艾尼.吾布力,张世伟,潘勇平,黄永波.双能X线吸收法与生物电阻抗法测量儿童身体成分结果比较[J].中国学校卫生,2007,28(1):3-6. 被引量:12
  • 5Lukaski H C, Johnson P E, Bolonchuk W W, et al. Assessment of Fat-Free Mass Using Bioelectrical Impedance Measurement of the Human Body [ J ]. Am J Clin Nutr, 1985 (41) :810 - 817.
  • 6Jackson A S,Pollock M L, Graves J E, et al. Reliability and Validity of Bioelectrical Impedance in Determining Body Composition [ J ]. J Appl Physiol, 1988, 64: 529 - 534.
  • 7Sartorio A, Malavolti M. Body Water Distribution in Severe Obesity and Its Assessment from Eight-Polar Bioelectrical Impedance Analysis [ J ]. European Journal of Clinical Nutrition ,2005,59:155 - 160.
  • 8Lukaski H C. Assessing Regional Muscle Mass with Segmental Measurements of Bioelectrical Impedance in Obese Women during Weight Loss [ J ]. Ann NY Acad Sci ,2000,904 : 154 - 158.
  • 9Joey C. Eisenmann, Kate A. Heelan, Assessing Body Composition among 3- to 8-Year-Old Children: Anthropometry, BIA, and DXA [ J ]. Obesity Research, 2004,12:1 633-1 640.
  • 10Mazess R B, Peppier W W, Chesnut C H, et al. Total Body Bone Mineral and Lean Body Mass by Dual-Photon Absorptiometry. I1. Comparison with Total Body Calcium by Neutron Activation Analysis ~ J 1- Calcif Tissue Int,1981,33(4) :361 -363.

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部