期刊文献+

一种生成对抗网络半监督遥感图像分类方法 被引量:2

A Semi-supervised Remote Sensing Image Classification Method on Generative Adversarial Network
下载PDF
导出
摘要 遥感图像由于数据集小,有标签数据少,因此其分类精度往往不高。为了提高遥感图像的分类精度,结合生成对抗网络与VGGNet-16设计了一个针对遥感图像的半监督分类方法,并分别在NWPU-RESISC45数据集与UC-Merced数据集上进行了验证。实验结果表明,该方法不仅能生成大量质量较好的遥感图像,增广了遥感图像数据集,解决了原始数据集样本不足的问题,同时能充分利用这些数据达到提高分类精度的效果,缓解有监督分类需要用到大量有标签数据的问题。 The classification accuracy of remote sensing images is often not high because of the small data set and few labeled data.In order to improve the classification accuracy of remote sensing images,a semi-supervised classification method for remote sensing images is designed in combination with generative adversarial network and VGGNet-16,and verified on NWPU-RESISC45 dataset and UC-Merced dataset respectively.The experimental results show that the method proposed in this paper cannot only generate a large number of well-quality remote sensing images,expand the remote sensing image dataset,solve the problem of insufficient samples of the original dataset,but also make full use of the data to improve the accuracy of classification,and alleviate the problem of using a large number of labeled data for supervised classification.
作者 钱园园 刘进锋 朱东辉 QIAN Yuanyuan;LIU Jinfeng;ZHU Donghui(School of Information Engineering,Ningxia University,Yinchuan 750021,China)
出处 《遥感信息》 CSCD 北大核心 2022年第4期36-42,共7页 Remote Sensing Information
基金 宁夏自然科学基金项目(2021AAC03084)。
关键词 遥感图像分类 半监督分类 生成对抗网络 VGGNet 深度学习 remote sensing image classification semi-supervised classification generating adversarial network VGGNet deep learning
  • 相关文献

参考文献6

二级参考文献59

  • 1陈怀亮,徐祥德,刘玉洁.土地利用与土地覆盖变化的遥感监测及环境影响研究综述[J].气象科技,2005,33(4):289-294. 被引量:33
  • 2李响,韩萍,吴仁彪,杨国庆.一种基于Weibull分布的SAR图像分割方法[J].系统工程与电子技术,2007,29(5):677-679. 被引量:6
  • 3杨剑,王珏,钟宁.流形上的Laplacian半监督回归[J].计算机研究与发展,2007,44(7):1121-1127. 被引量:15
  • 4Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B(methodological), 1977 : 1 - 38.
  • 5Shahshahani B M, Landgrebe D A. The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon. IEEE Transactions on Geoscience and Remote Sensing,1994,32(5) :1087- 1095.
  • 6Miller D J, Uyar H S. A mixture of experts classifier with learning based on both labelled and unlabeled data. Advances in Neural Information Processing Systems. Cambridge, MAt MIT Press, 1997: 571-577.
  • 7Nigam K, Mccallum A K, Thrun S, et al. Text classification from labeled and unlabeled documents using EM. Machine Learning, 2000, 39 (2 3): 103-134.
  • 8Joachims T. Transductive inference for text classification using support vector machines. In: Proceedings of the 16^th International Conference on Machine Learning. New York, NY: ACM, 1999,99 200- 209.
  • 9Chapelle O,Zien A. Semi-supervised classification by low density separation. In: Proceedings of the 10^rd In ternational Workshop on Artificial Intelligence and Statistics. Brookline, MA: Microtome, 2005, 1: 57- 64.
  • 10Chapelle O, Chi M, Zien A. A continuation method for semi-supervised SVMs. In: Proceedings of the 23^rd International Conference on Machine Learning. New York, NY, ACM, 2006 : 185- 192.

共引文献173

同被引文献13

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部