期刊文献+

大数据环境下Google Earth Engine平台的遥感教学研究 被引量:1

Research on Remote Sensing Teaching for Google Earth Engine Platform in Big Data Environment
下载PDF
导出
摘要 随着大数据的快速发展,高校教学模式不断改革,对高校信息化教学模式的研究越来越多。该文顺应大数据的发展趋势,结合目前高校信息化教学模式所面临的问题,以遥感专业为例,借助平台的海量数据以及开发平台(Python和JavaScript),改变传统教学模式,培养学生自主学习能力,提升学生的专业素养,增强课堂有效性,满足当代大学生个性化学习的需要。 With the rapid development of big data,as well as the unceasing reform of teaching mode in colleges and universities,the study of the information-based teaching mode is overwhelming.In line with the development trend of big data and in combination with the problems faced by the current information-based teaching mode in colleges and universities,this paper takes the remote sensing major as an example and changes the traditional teaching mode of“teaching and learning”for teachers and students with the help of the platform’s massive data and development platform(Python and JavaScript),so as to cultivate students’self-learning ability and improve their professional quality,enhance the effectiveness of the classroom and meet the needs of the contemporary college students’individualized teaching.
作者 刘春阳 余学祥 刘超 赵兴旺 陈健 LIU Chunyang;YU Xuexiang;LIU Chao;ZHAO Xingwang;CHEN Jian
出处 《科教文汇》 2022年第19期53-56,共4页 Journal of Science and Education
基金 安徽省教学示范课程“误差理论与测量平差基础”(2020SJJXSFK0916) 安徽省高等学校省级质量工程项目“大规模在线开放课程(MOOC)示范项目——误差理论与测量平差基础”(2019mooc128) GNSS原理及其应用——安徽省普通高校教学示范课程(2020SJJXSFK0917) 安徽理工大学安徽华印机电股份有限公司实践教育基地(2020sjjd038)。
关键词 大数据 高校教学模式 遥感专业 Google Earth Engine big data teaching mode in colleges and universities remote sensing major Google Earth Engine
  • 相关文献

参考文献6

二级参考文献31

  • 1Brynjolfsson, E. Erik Brynjolfsson on Big Data: A Revolution in Decision-Making Improves Productivity [EB/OL]. http://mitsloanexperts. mit.edu/erik -brynjolfsson -on -big -data -a -revolution -in -decision - making-improves-productivity/.
  • 2Schleicher, A. Big Data and PISA [EB/OL]. http://www. huffingtonpost.Com/andreas -schleicher/big -data -and -pisa_b_3633558. html.
  • 3上海市教育委员会.2012年绿色指标推进情况[EB/OL].http://www.shmee.gov.cn/html/article/201306/68754.php.
  • 4Lohr, S. The Age of Big Data [N]. New York Times, 2012-2-11 (10).
  • 5Grafsgaard, J., K. Boyer & J. Lester. "Toward a Machine Learning Framework for Understanding Affective Tutorial Interaction" [A]. In Proceedings of the 1 lth International Conference on Intelligent Tutoring Systems, 2012,52-58.
  • 6Bienkowski, M., M. Feng & B. Means. Enhancing Teaching and Learning Through Educational Data Mining and Learning Analytics: An Issue Brief [M]. Washington, DC:Office of Educational Technology, U. S. Department of Education,2012.
  • 7Corbett, A. & J. Anderson. Knowledge Tracing: Modeling the Acquisition of Procedural Knowledge [J]. User Modeling and User- Adapted Interaction, 1995,4,253-278.
  • 8Calvani, A.,A. Fini, M. Molino, & M. Ranieri. Visualizing and monitoring effective interactions in online collaborative groups. British Journal of Educational Technology,2009,41 (2), 213-226.
  • 9Beck, J & J. Mostow. "'How who should practice: Using learning decomposition to evaluate the efficacy of different types of practice for different types of students" [A]. In Proceedings of the 9th International Conference on Intelligent Tutoring Systems, 2008,353 - 362.
  • 10Hamilton, L., R. Halverson, S. Jackson, E. Mandinach,.J. Snpovitz, & J. Wayman. Using student achievement data to support instructional decision making [M]. Washington, DC: National Center for Education Evaluation and Regional Assistance, Institute of Education Sciences, U.S. Department of Education,2009.

共引文献621

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部